scholarly journals Glutamine Antagonist GA-607 Causes a Dramatic Accumulation of FGAR Which Can be Used to Monitor Target Engagement

2021 ◽  
Vol 22 ◽  
Author(s):  
Jesse Alt ◽  
Sadakatali S. Gori ◽  
Kathryn M. Lemberg ◽  
Arindom Pal ◽  
Vijayabhaskar Veeravalli ◽  
...  

Background: Metabolomic analyses from our group and others have shown that tumors treated with glutamine antagonists (GA) exhibit robust accumulation of formylglycinamide ribonucleotide (FGAR), an intermediate in the de novo purine synthesis pathway. The increase in FGAR is attributed to the inhibition of the enzyme FGAR amidotransferase (FGAR-AT) that catalyzes the ATP-dependent amidation of FGAR to formylglycinamidine ribonucleotide (FGAM). While perturbation of this pathway resulting from GA therapy has long been recognized, no study has reported systematic quantitation and analyses of FGAR in plasma and tumors. Objective: Herein, we aimed to evaluate the efficacy of our recently discovered tumor-targeted GA prodrug, GA-607 (isopropyl 2-(6-acetamido-2-(adamantane-1-carboxamido)hexanamido)-6-diazo-5-oxohexanoate), and demonstrate its target engagement by quantification of FGAR in plasma and tumors. Methods: Efficacy and pharmacokinetics of GA-607 were evaluated in a murine EL4 lymphoma model followed by global tumor metabolomic analysis. Liquid chromatography-mass spectrometry (LC-MS) based methods employing the ion-pair chromatography approach were developed and utilized for quantitative FGAR analyses in plasma and tumors. Results: GA-607 showed preferential tumor distribution and robust single-agent efficacy in a murine EL4 lymphoma model. While several metabolic pathways were perturbed by GA-607 treatment, FGAR showed the highest increase qualitatively. Using our newly developed sensitive and selective LC-MS method, we showed a robust >80- and >10-fold increase in tumor and plasma FGAR levels, respectively, with GA-607 treatment. Conclusion: These studies describe the importance of FGAR quantification following GA therapy in cancer and underscore its importance as a valuable pharmacodynamic marker in the preclinical and clinical development of GA therapies.

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Cody A Rutledge ◽  
Mabel Lopez ◽  
Steven Mullett ◽  
Stacy Wendell ◽  
Eric Goetzman ◽  
...  

Background: The mechanisms underlying diastolic dysfunction remain complicated and poorly understood. Previously implicated mechanisms include increased interstitial fibrosis and oxidative damage, altered calcium handling, and mitochondrial dysfunction. In this study, we investigate changes in the cardiac metabolic profile from mice with Angiotensin-II (Ang)-induced diastolic dysfunction. Because treatment with the GLP-1 agonist liraglutide (Lira) relieves Ang-induced diastolic dysfunction, we examined altered metabolites in Ang and Ang+Lira mice to identify metabolic pathways involved. Methods: 8-wk mice were implanted with Ang pumps (1000 ng/kg/min) +/- Lira (0.2 mg/kg/day) therapy for 4 wks and compared to sham mice. Baseline and 4-wk echocardiography was performed. Hearts were collected for RNA-sequencing, Western blot, histology, radiolabeled palmitate assay, and targeted metabolomics by liquid chromatography-mass spectrometry to assess metabolic changes. Results: After Ang treatment, mice had significant diastolic dysfunction but only mild hypertrophy based on echo and histologic measures and no evidence of systolic change. Compared to sham mice, Ang mice had reduced E/A (Sham, 2.67±0.40; Ang, 1.71±0.11; p<0.05) and peak reverse longitudinal strain rate (rLSR;Sham, 8.48±0.65/s; Ang, 6.081±0.33/s; p<0.05, consistent with diastolic dysfunction. Ang+Lira mice had improved E/A (3.57±0.50, p<0.01 vs. Ang) and rLSR (8.65±0.68/s, p<0.01 vs Ang). Targeted metabolomic analysis of hearts found significantly increased accumulation of Acetyl-CoA in Ang mice (peak area 0.14±0.02) compared to sham (0.04±0.02 ,p<0.05) that is restored by Lira therapy (0.02±0.01 ,p<0.05 vs sham and Ang). A radiolabeled palmitate oxidation assay found decreased palmitate oxidation in both Ang and Ang+Lira mice compared to sham, but interestingly, also demonstrated significantly lower acid soluble metabolite oxidation in the Ang+Lira mice vs. Ang alone. Conclusions: We found that Ang-treated mice accumulate myocardial Acetyl-CoA, suggesting a defect in TCA flux. Lira resolves the increase in Acetyl-CoA and improved measures of diastolic dysfunction. This data may implicate a novel metabolic pathway in the development of diastolic disease.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3314
Author(s):  
Tomasz Kowalczyk ◽  
Joanna Kisluk ◽  
Karolina Pietrowska ◽  
Joanna Godzien ◽  
Miroslaw Kozlowski ◽  
...  

Identification of the NSCLC subtype at an early stage is still quite sophisticated. Metabolomics analysis of tissue and plasma of NSCLC patients may indicate new, and yet unknown, metabolic pathways active in the NSCLC. Our research characterized the metabolomics profile of tissue and plasma of patients with early and advanced NSCLC stage. Samples were subjected to thorough metabolomics analyses using liquid chromatography-mass spectrometry (LC-MS) technique. Tissue and/or plasma samples from 137 NSCLC patients were analyzed. Based on the early stage tissue analysis, more than 200 metabolites differentiating adenocarcinoma (ADC) and squamous cell lung carcinoma (SCC) subtypes as well as normal tissue, were identified. Most of the identified metabolites were amino acids, fatty acids, carnitines, lysoglycerophospholipids, sphingomyelins, plasmalogens and glycerophospholipids. Moreover, metabolites related to N-acyl ethanolamine (NAE) biosynthesis, namely glycerophospho (N-acyl) ethanolamines (GP-NAE), which discriminated early-stage SCC from ADC, have also been identified. On the other hand, the analysis of plasma of chronic obstructive pulmonary disease (COPD) and NSCLC patients allowed exclusion of the metabolites related to the inflammatory state in lungs and the identification of compounds (lysoglycerophospholipids, glycerophospholipids and sphingomyelins) truly characteristic to cancer. Our results, among already known, showed novel, thus far not described, metabolites discriminating NSCLC subtypes, especially in the early stage of cancer. Moreover, the presented results also indicated the activity of new metabolic pathways in NSCLC. Further investigations on the role of NAE biosynthesis pathways in the early stage of NSCLC may reveal new prognostic and diagnostic targets.


2021 ◽  
Vol 11 (3) ◽  
pp. 1259
Author(s):  
Qiong Wu ◽  
Bo Zhao ◽  
Guangchao Sui ◽  
Jinming Shi

Aberrant metabolism is one of the hallmarks of cancers. The contributions of dysregulated metabolism to cancer development, such as tumor cell survival, metastasis and drug resistance, have been extensively characterized. “Reprogrammed” metabolic pathways in cancer cells are mainly represented by excessive glucose consumption and hyperactive de novo lipogenesis. Natural compounds with anticancer activities are constantly being demonstrated to target metabolic processes, such as glucose transport, aerobic glycolysis, fatty acid synthesis and desaturation. However, their molecular targets and underlying anticancer mechanisms remain largely unclear or controversial. Mounting evidence indicated that these natural compounds could modulate the expression of key regulatory enzymes in various metabolic pathways at transcriptional and translational levels. Meanwhile, natural compounds could also inhibit the activities of these enzymes by acting as substrate analogs or altering their protein conformations. The actions of natural compounds in the crosstalk between metabolism modulation and cancer cell destiny have become increasingly attractive. In this review, we summarize the activities of natural small molecules in inhibiting key enzymes of metabolic pathways. We illustrate the structural characteristics of these compounds at the molecular level as either inhibitor of various enzymes or regulators of metabolic pathways in cancer cells. Our ultimate goal is to both facilitate the clinical application of natural compounds in cancer therapies and promote the development of novel anticancer therapeutics.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Oliver C. Watkins ◽  
Preben Selvam ◽  
Reshma Appukuttan Pillai ◽  
Victoria K. B. Cracknell-Hazra ◽  
Hannah E. J. Yong ◽  
...  

Abstract Background Fetal docosahexaenoic acid (DHA) supply relies on preferential transplacental transfer, which is regulated by placental DHA lipid metabolism. Maternal hyperglycemia and obesity associate with higher birthweight and fetal DHA insufficiency but the role of placental DHA metabolism is unclear. Methods Explants from 17 term placenta were incubated with 13C-labeled DHA for 48 h, at 5 or 10 mmol/L glucose treatment, and the production of 17 individual newly synthesized 13C-DHA labeled lipids quantified by liquid chromatography mass spectrometry. Results Maternal BMI positively associated with 13C-DHA-labeled diacylglycerols, triacylglycerols, lysophospholipids, phosphatidylcholine and phosphatidylethanolamine plasmalogens, while maternal fasting glycemia positively associated with five 13C-DHA triacylglycerols. In turn, 13C-DHA-labeled phospholipids and triacylglycerols positively associated with birthweight centile. In-vitro glucose treatment increased most 13C-DHA-lipids, but decreased 13C-DHA phosphatidylethanolamine plasmalogens. However, with increasing maternal BMI, the magnitude of the glucose treatment induced increase in 13C-DHA phosphatidylcholine and 13C-DHA lysophospholipids was curtailed, with further decline in 13C-DHA phosphatidylethanolamine plasmalogens. Conversely, with increasing birthweight centile glucose treatment induced increases in 13C-DHA triacylglycerols were exaggerated, while glucose treatment induced decreases in 13C-DHA phosphatidylethanolamine plasmalogens were diminished. Conclusions Maternal BMI and glycemia increased the production of different placental DHA lipids implying impact on different metabolic pathways. Glucose-induced elevation in placental DHA metabolism is moderated with higher maternal BMI. In turn, findings of associations between many DHA lipids with birthweight suggest that BMI and glycemia promote fetal growth partly through changes in placental DHA metabolism.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 298
Author(s):  
Raúl González-Domínguez ◽  
Álvaro González-Domínguez ◽  
Ana Sayago ◽  
Juan Diego González-Sanz ◽  
Alfonso María Lechuga-Sancho ◽  
...  

Hydrophilic metabolites are closely involved in multiple primary metabolic pathways and, consequently, play an essential role in the onset and progression of multifactorial human disorders, such as Alzheimer’s disease. This review article provides a comprehensive revision of the literature published on the use of mass spectrometry-based metabolomics platforms for approaching the central metabolome in Alzheimer’s disease research, including direct mass spectrometry, gas chromatography-mass spectrometry, hydrophilic interaction liquid chromatography-mass spectrometry, and capillary electrophoresis-mass spectrometry. Overall, mounting evidence points to profound disturbances that affect a multitude of central metabolic pathways, such as the energy-related metabolism, the urea cycle, the homeostasis of amino acids, fatty acids and nucleotides, neurotransmission, and others.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 2626-2626
Author(s):  
Chia-Chi Lin ◽  
Aung Naing ◽  
Manish R. Patel ◽  
Howard A. Burris III ◽  
Giuseppe Curigliano ◽  
...  

2626 Background: Inducible T-cell co-stimulator (ICOS) is an important co-stimulatory receptor on effector T cells (Teffs) that also promotes tumor growth due to its high expression on regulatory T cells (Tregs). KY1044 is a fully human IgG1 that targets ICOS, acting via a dual mode of action (MoA) by depleting ICOShigh Tregs and stimulating ICOSLow Teffs. A Phase 1/2 clinical trial (NCT03829501) is currently assessing the safety and preliminary efficacy of KY1044, as a single agent and in combination with atezolizumab, in subjects with advanced relapsed/refractory malignancies. Using longitudinal blood samples and tumor biopsies, we aim to correlate KY1044 target engagement levels with pharmacodynamic (PD) properties (e.g. dual MoA) in the tumor microenvironment (TME) and the circulation. Methods: Phase 1 subjects were enrolled in dose escalation and enrichment cohorts to evaluate the effect of KY1044 as monotherapy (0.8 – 240 mg) Q3W and in combination (0.8 – 80 mg) with atezolizumab (1200 mg) Q3W. PBMCs, plasma and tumor biopsies were collected over the first 3 cycles to confirm target engagement and KY1044 MoA. The sample analysis included: immunohistochemistry (IHC) of tumor samples (ICOS, FOXP3 and CD8); circulating T cell immunoprofiling and receptor occupancy by chip-cytometry; PBMC and tumor sample pre- and post-treatment transcriptomic analysis; and the assessment of circulating cytokines (e.g. GM-CSF). Results: As assessed in PBMCs, full/prolonged ICOS target engagement on T cells was confirmed in subjects receiving a flat dose of 8 to 240 mg, while partial/transient saturation was observed at lower doses (0.8-2.4 mg). The target engagement was not affected by atezolizumab. The immune cell profiling showed changes in some populations, but there was no significant depletion of peripheral ICOS+ cells. In contrast, pre- and post-treatment IHC analysis of ICOS+/FOXP3+ cells in tumor biopsies confirmed a KY1044-dose dependent reduction of ICOS+ Tregs and maintenance of CD8+ T cells in the TME. Together, this resulted in an increased intratumoral CD8+/ICOS+ Treg ratio at all doses, plateauing from subjects receiving a flat KY1044 dose of 8 mg. KY1044-dependent agonism was indirectly assessed by measuring circulating cytokine levels. A post-dosing transient induction of GM-CSF was evident in subjects dosed with KY1044 at the 0.8 and 2.4 mg dose, whereas minimal induction was observed at dose of 8 mg and higher. Conclusions: LongitudinalPDdata confirmed the expected KY1044 MoA, namely ICOS Treg depletion and increased CD8/ICOS Treg ratio in the TME as well as T cell co-stimulation. The observed PD responses are currently being further explored in a more homogenous patient population.


Reproduction ◽  
2021 ◽  
Vol 162 (3) ◽  
pp. 181-191
Author(s):  
Jessica Ispada ◽  
Aldcejam Martins da Fonseca Junior ◽  
Otávio Luiz Ramos Santos ◽  
Camila Bruna de Lima ◽  
Erika Cristina dos Santos ◽  
...  

Metabolic and molecular profiles were reported as different for bovine embryos with distinct kinetics during the first cleavages. In this study, we used this same developmental model (fast vs slow) to determine if the relationship between metabolism and developmental kinetics affects the levels of acetylation or tri-methylation at histone H3 lysine 9 (H3K9ac and H3K9me3, respectively). Fast and slow developing embryos presented different levels of H3K9ac and H3K9me3 from the earliest stages of development (40 and 96 hpi) and up to the blastocyst stage. For H3K9me3, both groups of embryos presented a wave of demethylation and de novo methylation, although it was more pronounced in fast than slow embryos, resulting in blastocysts with higher levels of this mark. The H3K9ac reprogramming profile was distinct between kinetics groups. While slow embryos presented a wave of deacetylation, followed by an increase in this mark at the blastocyst stage, fast embryos reduced this mark throughout all the developmental stages studied. H3K9me3 differences corresponded to writer and eraser transcript levels, while H3K9ac patterns were explained by metabolism-related gene expression. To verify if metabolic differences could alter levels of H3K9ac, embryos were cultured with sodium-iodoacetate (IA) or dichloroacetate (DCA) to disrupt the glycolytic pathway or increase acetyl-CoA production, respectively. IA reduced H3K9ac while DCA increased H3K9ac in blastocysts. Concluding, H3K9me3 and H3K9ac patterns differ between embryos with different kinetics, the second one explained by metabolic pathways involved in acetyl-CoA production. So far, this is the first study demonstrating a relationship between metabolic differences and histone post-translational modifications in bovine embryos.


Sign in / Sign up

Export Citation Format

Share Document