Current and advanced nanomaterials in dentistry as regeneration agents: an update

Author(s):  
Mohsen Yazdanian ◽  
Aghil Rahmani ◽  
Elahe Tahmasebi ◽  
Hamid Tebyanian ◽  
Alireza Yazdanian ◽  
...  

: In modern dentistry, nanomaterials have strengthened their foothold among tissue engineering strategies for treating bone and dental defects due to a variety of reasons, including trauma and tumors. Besides their finest physiochemical features, the biomimetic characteristics of nanomaterials promote cell growth and stimulate tissue regeneration. The single units of these chemical substances are small-sized particles, usually between 1 to 100 nm, in an unbound state. This unbound state allows particles to constitute aggregates with one or more external dimensions and provide a high surface area. Nanomaterials have brought advances in regenerative dentistry from the laboratory to clinical practice. They are particularly used for creating novel biomimetic nanostructures for cell regeneration, targeted treatment, diagnostics, imaging, and the production of dental materials. In regenerative dentistry, nanostructured matrices and scaffolds help control cell differentiation better. Nanomaterials recapitulate the natural dental architecture and structure and form functional tissues better compared to the conventional autologous and allogenic tissues or alloplastic materials. The reason is that novel nanostructures provide an improved platform for supporting and regulating cell proliferation, differentiation, and migration. In restorative dentistry, nanomaterials are widely used in constructing nanocomposite resins, bonding agents, endodontic sealants, coating materials, and bioceramics. They are also used for making daily dental hygiene products such as mouth rinses. The present article classifies nanostructures and nanocarriers in addition to reviewing their design and applications for bone and dental regeneration.

Author(s):  
Frances M. Ross ◽  
Peter C. Searson

Porous semiconductors represent a relatively new class of materials formed by the selective etching of a single or polycrystalline substrate. Although porous silicon has received considerable attention due to its novel optical properties1, porous layers can be formed in other semiconductors such as GaAs and GaP. These materials are characterised by very high surface area and by electrical, optical and chemical properties that may differ considerably from bulk. The properties depend on the pore morphology, which can be controlled by adjusting the processing conditions and the dopant concentration. A number of novel structures can be fabricated using selective etching. For example, self-supporting membranes can be made by growing pores through a wafer, films with modulated pore structure can be fabricated by varying the applied potential during growth, composite structures can be prepared by depositing a second phase into the pores and silicon-on-insulator structures can be formed by oxidising a buried porous layer. In all these applications the ability to grow nanostructures controllably is critical.


Author(s):  
A. K. Datye ◽  
D. S. Kalakkad ◽  
L. F. Allard ◽  
E. Völkl

The active phase in heterogeneous catalysts consists of nanometer-sized metal or oxide particles dispersed within the tortuous pore structure of a high surface area matrix. Such catalysts are extensively used for controlling emissions from automobile exhausts or in industrial processes such as the refining of crude oil to produce gasoline. The morphology of these nano-particles is of great interest to catalytic chemists since it affects the activity and selectivity for a class of reactions known as structure-sensitive reactions. In this paper, we describe some of the challenges in the study of heterogeneous catalysts, and provide examples of how electron holography can help in extracting details of particle structure and morphology on an atomic scale.Conventional high-resolution TEM imaging methods permit the image intensity to be recorded, but the phase information in the complex image wave is lost. However, it is the phase information which is sensitive at the atomic scale to changes in specimen thickness and composition, and thus analysis of the phase image can yield important information on morphological details at the nanometer level.


Author(s):  
A. Sachdev ◽  
J. Schwank

Platinum - tin bimetallic catalysts have been primarily utilized in the chemical industry in the catalytic reforming of petroleum fractions. In this process the naphtha feedstock is converted to hydrocarbons with higher octane numbers and high anti-knock qualities. Most of these catalysts contain small metal particles or crystallites supported on high surface area insulating oxide supports. The determination of the structure and composition of these particles is crucial to the understanding of the catalytic behavior. In a bimetallic catalyst it is important to know how the two metals are distributed within the particle size range and in what way the addition of a second metal affects the size, structure and composition of the metal particles. An added complication in the Pt-Sn system is the possibility of alloy formation between the two elements for all atomic ratios.


2018 ◽  
Author(s):  
Srimanta Pakhira ◽  
Jose Mendoza-Cortes

<div>Covalent organic frameworks (COFs) have emerged as an important class of nano-porous crystalline materials with many potential applications. They are intriguing platforms for the design of porous skeletons with special functionality at the molecular level. However, despite their extraordinary properties, it is difficult to control their electronic properties, thus hindering the potential implementation in electronic devices. A new form of nanoporous material, COFs intercalated with first row transition metal is proposed to address this fundamental drawback - the lack of electronic tunability. Using first-principles calculations, we have designed 31 new COF materials <i>in-silico</i> by intercalating all of the first row transition metals (TMs) with boroxine-linked and triazine-linked COFs: COF-TM-x (where TM=Sc-Zn and x=3-5). This is a significant addition considering that only 187 experimentally COFs structures has been reported and characterized so far. We have investigated their structure and electronic properties. Specifically, we predict that COF's band gap and density of states (DOSs) can be controlled by intercalating first row transition metal atoms (TM: Sc - Zn) and fine tuned by the concentration of TMs. We also found that the $d$-subshell electron density of the TMs plays the main role in determining the electronic properties of the COFs. Thus intercalated-COFs provide a new strategy to control the electronic properties of materials within a porous network. This work opens up new avenues for the design of TM-intercalated materials with promising future applications in nanoporous electronic devices, where a high surface area coupled with fine-tuned electronic properties are desired.</div>


Author(s):  
Kailun Yang ◽  
Recep Kas ◽  
Wilson A. Smith

<p>This study evaluated the performance of the commonly used strong buffer electrolytes, i.e. phosphate buffers, during CO<sub>2</sub> electroreduction in neutral pH conditions by using in-situ surface enhanced infrared absorption spectroscopy (SEIRAS). Unfortunately, the buffers break down a lot faster than anticipated which has serious implications on many studies in the literature such as selectivity and kinetic analysis of the electrocatalysts. Increasing electrolyte concentration, surprisingly, did not extend the potential window of the phosphate buffers due to dramatic increase in hydrogen evolution reaction. Even high concentration phosphate buffers (1 M) break down within the potentials (-1 V vs RHE) where hydrocarbons are formed on copper electrodes. We have extended the discussion to high surface area electrodes by evaluating electrodes composed of copper nanowires. We would like highlight that it is not possible to cope with high local current densities on these high surface area electrodes by using high buffer capacity solutions and the CO<sub>2</sub> electrocatalysts are needed to be evaluated by casting thin nanoparticle films onto inert substrates as commonly employed in fuel cell reactions and up to now scarcely employed in CO<sub>2</sub> electroreduction. In addition, we underscore that normalization of the electrocatalytic activity to the electrochemical active surface area is not the ultimate solution due to concentration gradient along the catalyst layer.This will “underestimate” the activity of high surface electrocatalyst and the degree of underestimation will depend on the thickness, porosity and morphology of the catalyst layer. </p> <p> </p>


2019 ◽  
Author(s):  
Chem Int

Activated carbon was prepared from molasses, which are natural precursors of vegetable origin resulting from the sugar industry. A simple elaboration process, based on chemical activation with phosphoric acid, was proposed. The final product, prepared by activation of molasses/phosphoric acid mixture in air at 500°C, presented high surface area (more than 1400 m2/g) and important maximum adsorption capacity for methylene blue (625 mg/g) and iodine (1660 mg/g). The activated carbon (MP2(500)) showed a good potential for the adsorption of Cr(VI), Cu(II) and Pb(II) from aqueous solutions. The affinity for the three ions was observed in the following order Cu2+ Cr6+ Pb2+. The process is governed by monolayer adsorption following the Langmuir model, with a correlation coefficient close to unity.


Author(s):  
Soumitra Satapathi ◽  
Rutusmita Mishra ◽  
Manisha Chatterjee ◽  
Partha Roy ◽  
Somesh Mohapatra

Nano-materials based drug delivery modalities to specific organs and tissues has become one of the critical endeavors in pharmaceutical research. Recently, two-dimensional graphene has elicited considerable research interest because of its potential application in drug delivery systems. Here we report, the drug delivery applications of PEGylated nano-graphene oxide (nGO-PEG), complexed with a multiphoton active and anti-cancerous diarylheptanoid drug curcumin. Specifically, graphene-derivatives were used as nanovectors for the delivery of the hydrophobic anticancer drug curcumin due to its high surface area and easy surface functionalization. nGO was synthesized by modified Hummer’s method and confirmed by XRD analysis. The formation of nGO, nGO-PEG and nGO-PEG-Curcumin complex were monitored through UV-vis, IR spectroscopy. MTT assay and AO/EB staining found that nGO-PEG-Curcumin complex afforded highly potent cancer cell killing in vitro with a human breast cancer cell line MCF7.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 21-28
Author(s):  
S.-C. Kim ◽  
D.-K. Lee

TiO2-coated granular activated carbon was employed for the removal of toxic microcystin-LR from water. High surface area of the activated carbon provided sites for the adsorption of microcystin-LR, and the adsorbed microcystin-LR migrated continuously onto the surface of TiO2 particles which located mainly at the exterior surface in the vicinity of the entrances of the macropores of the activated carbon. The migrated microcystin-LR was finally degraded into nontoxic products and CO2 very quickly. These combined roles of the activated carbon and TiO2 showed a synergistic effect on the efficient degradation of toxic microcystin-LR. A continuous flow fluidized bed reactor with the TiO2-coated activated carbon could successfully be employed for the efficient photocatalytic of microcystin-LR.


1985 ◽  
Vol 20 (2) ◽  
pp. 55-67
Author(s):  
W.B. Anderson ◽  
P.M. Huck ◽  
T.M.R. Meadley ◽  
T.P. Hynes

Abstract This paper describes the on-going pilot scale development of a new treatment process designed to remove radium-226 from uranium milling effluents. Presently, decants from Canadian uranium mining and milling tailings areas are treated with barium chloride to remove radium-226 prior to discharge into the environment. This is usually accomplished in large natural or man-made ponds which provide an opportunity for a (Ba,Ra)SO4 precipitate to form and subsequently settle. Sand filtration is sometimes used as a polishing step. This new process differs from conventional and other experimental processes in that it involves the use of a fluidized bed to facilitate the deposition of a (Ba,Ra)SO4 precipitate on a granular medium of high surface area. As a stand-alone treatment process, the new process is consistently able to reduce incoming radium-226 activity levels by 90-99%. Effluent levels of 10 pCi/L (0.370 Bq/L) or less have been achieved, depending on the influent activity levels. Recent testing of the process as a polishing step has demonstrated radium removal efficiencies up to 60% when the process influent was already less than 5 pCi/L (0.185 Bq/L). The process has been operated at temperatures ranging from 26°C down to 0.3°C with no reduction in efficiency. In contrast to treatment times in the order of days for conventional settling pond systems and hours for mechanical stirred tank/filtration systems, the new process is able to achieve these radium removal efficiencies in times on the order of one minute.


2020 ◽  
Vol 21 (11) ◽  
pp. 1016-1027 ◽  
Author(s):  
Fatemeh Emadi ◽  
Arash Emadi ◽  
Ahmad Gholami

Graphene Derivatives (GDs) have captured the interest and imagination of pharmaceutical scientists. This review exclusively provides pharmacokinetics and pharmacodynamics information with a particular focus on biopharmaceuticals. GDs can be used as multipurpose pharmaceutical delivery systems due to their ultra-high surface area, flexibility, and fast mobility of charge carriers. Improved effects, targeted delivery to tissues, controlled release profiles, visualization of biodistribution and clearance, and overcoming drug resistance are examples of the benefits of GDs. This review focuses on the application of GDs for the delivery of biopharmaceuticals. Also, the pharmacokinetic properties and the advantage of using GDs in pharmaceutics will be reviewed to achieve a comprehensive understanding about the GDs in pharmaceutical sciences.


Sign in / Sign up

Export Citation Format

Share Document