Circular RNAs Serve as Novel Biomarkers and Therapeutic Targets in Cancers

2019 ◽  
Vol 19 (2) ◽  
pp. 125-133 ◽  
Author(s):  
Shuai Fang ◽  
Jinchang Pan ◽  
Chengwei Zhou ◽  
Hui Tian ◽  
Jinxian He ◽  
...  

Circular RNAs (circRNAs) are a class of non-coding RNAs (ncRNAs) that structurally form closed loops without 5'-end cap and 3'-end poly(A) tail unlike linear RNAs. CircRNAs are widely present in eukaryotic cells with the capabilities of structural stability, high abundance and cell- /tissue-specific expression. A growing body of researches suggest that the dysregulated circRNAs are intimately relevant to the occurrence and development of cancer. In this review, we mainly discuss the differentially expressed circRNAs in cancer tissues, plasma and exosomes, which makes it possible for clinicians to use certain circRNAs as novel biomarkers for cancer diagnosis and prognosis. In particular, we primarily focus on circRNAs as potential therapeutic targets, which will provide promising applications in cancer gene therapy.

2021 ◽  
Vol 8 ◽  
Author(s):  
Jianwen Yu ◽  
Danli Xie ◽  
Naya Huang ◽  
Qin Zhou

Circular RNAs (circRNAs) are a novel type of non-coding RNAs that have aroused growing attention in this decade. They are widely expressed in eukaryotes and generally have high stability owing to their special closed-loop structure. Many circRNAs are abundant, evolutionarily conserved, and exhibit cell-type-specific and tissue-specific expression patterns. Mounting evidence suggests that circRNAs have regulatory potency for gene expression by acting as microRNA sponges, interacting with proteins, regulating transcription, or directly undergoing translation. Dysregulated expression of circRNAs were found in many pathological conditions and contribute to the pathogenesis and progression of various disorders, including renal diseases. Recent studies have revealed that circRNAs may serve as novel reliable biomarkers for the diagnosis and prognosis prediction of multiple kidney diseases, such as renal cell carcinoma (RCC), acute kidney injury (AKI), diabetic kidney disease (DKD), and other glomerular diseases. Furthermore, circRNAs expressed by intrinsic kidney cells are shown to play a substantial role in kidney injury, mostly reported in DKD and RCC. Herein, we review the biogenesis and biological functions of circRNAs, and summarize their roles as promising biomarkers and therapeutic targets in common kidney diseases.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kedeerya Aishanjiang ◽  
Xin-dong Wei ◽  
Yi Fu ◽  
Xinjie Lin ◽  
Yujie Ma ◽  
...  

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Due to the lack of potent diagnosis and prognosis biomarkers and effective therapeutic targets, the overall prognosis of survival is poor in HCC patients. Circular RNAs (circRNAs) are a class of novel endogenous non-coding RNAs with covalently closed loop structures and implicated in diverse physiological processes and pathological diseases. Recent studies have demonstrated the involvement of circRNAs in HCC diagnosis, prognosis, development, and drug resistance, suggesting that circRNAs may be a class of novel targets for improving HCC diagnosis, prognosis, and treatments. In fact, some artificial circRNAs have been engineered and showed their therapeutic potential in treating HCV infection and gastric cancer. In this review, we introduce the potential of circRNAs as biomarkers for HCC diagnosis and prognosis, as therapeutic targets for HCC treatments and discuss the challenges in circRNA research and chances of circRNA application.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1472 ◽  
Author(s):  
Peixin Dong ◽  
Daozhi Xu ◽  
Ying Xiong ◽  
Junming Yue ◽  
Kei Ihira ◽  
...  

Circular RNAs (circRNAs) are covalently closed, endogenous non-coding RNAs and certain circRNAs are linked to human tumors. Owing to their circular form, circRNAs are protected from degradation by exonucleases, and therefore, they are more stable than linear RNAs. Many circRNAs have been shown to sponge microRNAs, interact with RNA-binding proteins, regulate gene transcription, and be translated into proteins. Mounting evidence suggests that circRNAs are dysregulated in cancer tissues and can mediate various signaling pathways, thus affecting tumorigenesis, metastasis, and remodeling of the tumor microenvironment. First, we review the characteristics, biogenesis, and biological functions of circRNAs, and describe various mechanistic models of circRNAs. Then, we provide a systematic overview of the functional roles of circRNAs in gynecological cancers. Finally, we describe the potential future applications of circRNAs as biomarkers for prognostic stratification and as therapeutic targets in gynecological cancers. Although the function of most circRNAs remains elusive, some individual circRNAs have biologically relevant functions in cervical cancer, ovarian cancer, and endometrial cancer. Certain circRNAs have the potential to serve as biomarkers and therapeutic targets in gynecological cancers.


2018 ◽  
Vol 27 (12) ◽  
pp. 1763-1777 ◽  
Author(s):  
Sheng-Wen Wang ◽  
Zhong Liu ◽  
Zhong-Song Shi

Non-coding RNAs (ncRNAs) are a class of functional RNAs that regulate gene expression in a post-transcriptional manner. NcRNAs include microRNAs, long non-coding RNAs and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes, including cerebral ischemic injury, neurodegeneration, neural development, and plasticity. Stroke is one of the leading causes of death and physical disability worldwide. Acute ischemic stroke (AIS) occurs when brain blood flow stops, and that stoppage results in reduced oxygen and glucose supply to cells in the brain. In this article, we review the latest progress on ncRNAs in relation to their implications in AIS, as well as their potential as diagnostic and prognostic biomarkers. We also review ncRNAs acting as possible therapeutic targets in future precision medicine. Finally, we conclude with a brief discussion of current challenges and future directions for ncRNAs studies in AIS, which may facilitate the translation of ncRNAs research into clinical practice to improve clinical outcome of AIS.


2021 ◽  
Vol 21 ◽  
Author(s):  
Lijia Su ◽  
Jinying Zhao ◽  
Huahua Su ◽  
Yanhua Wang ◽  
Wenfeng Huang ◽  
...  

: Lung adenocarcinoma (LUAD) is the common histological subtype of non-small-cell lung carcinoma (NSCLC). Circular RNAs (circRNAs) represent a new class of non-coding RNAs (ncRNAs) involved in the development of cancer. Accumulating evidence indicated that a large number of circular RNAs were found to be involved in many biological processes, including tumor initiation, proliferation and progression. These circRNAs present great potentials as new biomarkers and vital targets for disease diagnosis and prognosis. In this review, we mainly focus on the differentially expressed circRNAs and their functions in the pathogenesis of LUAD, which makes it possible for the utility of circRNAs as novel biomarkers for early diagnosis and therapy. Especially, it is helpful to develop circRNAs as crucial therapeutic targets, thus providing a promising biomedical application in the field of cancer gene therapy.


2019 ◽  
Vol 115 (12) ◽  
pp. 1732-1756 ◽  
Author(s):  
Francesca Fasolo ◽  
Karina Di Gregoli ◽  
Lars Maegdefessel ◽  
Jason L Johnson

Abstract Atherosclerosis underlies the predominant number of cardiovascular diseases and remains a leading cause of morbidity and mortality worldwide. The development, progression and formation of clinically relevant atherosclerotic plaques involves the interaction of distinct and over-lapping mechanisms which dictate the roles and actions of multiple resident and recruited cell types including endothelial cells, vascular smooth muscle cells, and monocyte/macrophages. The discovery of non-coding RNAs (ncRNAs) including microRNAs, long non-coding RNAs, and circular RNAs, and their identification as key mechanistic regulators of mRNA and protein expression has piqued interest in their potential contribution to atherosclerosis. Accruing evidence has revealed ncRNAs regulate pivotal cellular and molecular processes during all stages of atherosclerosis including cell invasion, growth, and survival; cellular uptake and efflux of lipids, expression and release of pro- and anti-inflammatory intermediaries, and proteolytic balance. The expression profile of ncRNAs within atherosclerotic lesions and the circulation have been determined with the aim of identifying individual or clusters of ncRNAs which may be viable therapeutic targets alongside deployment as biomarkers of atherosclerotic plaque progression. Consequently, numerous in vivo studies have been convened to determine the effects of moderating the function or expression of select ncRNAs in well-characterized animal models of atherosclerosis. Together, clinicopathological findings and studies in animal models have elucidated the multifaceted and frequently divergent effects ncRNAs impose both directly and indirectly on the formation and progression of atherosclerosis. From these findings’ potential novel therapeutic targets and strategies have been discovered which may pave the way for further translational studies and possibly taken forward for clinical application.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4161
Author(s):  
Yiwei Li ◽  
Mohammed Najeeb Al Hallak ◽  
Philip A. Philip ◽  
Asfar S. Azmi ◽  
Ramzi M. Mohammad

Pancreatic cancer is an aggressive malignance with high mortality. The lack of early diagnosis and effective therapy contributes to the high mortality of this deadly disease. For a long time being, the alterations in coding RNAs have been considered as major targets for diagnosis and treatment of pancreatic cancer. However, with the advances in high-throughput next generation of sequencing more alterations in non-coding RNAs (ncRNAs) have been discovered in different cancers. Further mechanistic studies have demonstrated that ncRNAs such as long noncoding RNAs (lncRNA), circular RNAs (circRNA) and piwi-interacting RNA (piRNA) play vital roles in the regulation of tumorigenesis, tumor progression and prognosis. In recent years, increasing studies have focused on the roles of ncRNAs in the development and progression of pancreatic cancer. Novel findings have demonstrated that lncRNA, circRNA, and piRNA are critically involved in the regulation of gene expression and cellular signal transduction in pancreatic cancer. In this review, we summarize the current knowledge of roles of lncRNA, circRNA, and piRNA in the diagnosis and prognosis of pancreatic cancer, and molecular mechanisms underlying the regulation of these ncRNAs and related signaling in pancreatic cancer therapy. The information provided here will help to find new strategies for better treatment of pancreatic cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tianli Yang ◽  
Yang Li ◽  
Feng Zhao ◽  
Liuhua Zhou ◽  
Ruipeng Jia

Circular RNAs (circRNAs) are a class of novel non-coding RNAs (ncRNAs). Emerging evidence demonstrates that circRNAs play crucial roles in many biological processes by regulating linear RNA transcription, downstream gene expression and protein or peptide translation. Meanwhile, recent studies have suggested that circRNAs have the potential to be oncogenic or anti-oncogenic and play vital regulatory roles in the initiation and progression of tumors. Circular RNA Forkhead box O3 (circ-Foxo3, hsa_circ_0006404) is encoded by the human FOXO3 gene and is one of the most studied circular RNAs acting as a sponge for potential microRNAs (miRNAs) (Du et al., 2016). Previous studies have reported that circ-Foxo3 is involved in the development and tumorigenesis of a variety of cancers (bladder, gastric, acute lymphocytic leukemia, glioma, etc.). In this review, we summarize the current studies concerning circ-Foxo3 deregulation and the correlative mechanism in various human cancers. We also point out the potential clinical applications of this circRNA as a biomarker for cancer diagnosis and prognosis.


2020 ◽  
Author(s):  
Li-rong Yan ◽  
Ang Wang ◽  
Zhi Lv ◽  
Yuan Yuan ◽  
Qian Xu

Abstract BackgroundMitochondria-nuclear cross talk and mitochondrial retrograde regulation are involved in the genesis and development of breast cancer (BC). Therefore, mitochondria can be regarded as a promising target for BC therapeutic strategies. In the present study, we aimed to construct regulating network and seek the potential biomarkers of BC diagnosis, prognosis and also the molecular therapeutic targets from the perspective of mitochondrial dysfunction. MethodsThe microarray data of mitochondria-related encoding genes of BC were downloaded from GEO including GSE128610 and GSE72319. GSE128610 was treated as test set and validation sets consisted of GSE72319 and TCGA, which were used for identifying mitochondria-related differential expressed genes (mrDEGs). We performed enrichment analysis, PPI network, hub mrDEGs, and overall survival analysis and constructed transcription factor (TF)-miRNA-hub mrDEGs network. ResultsA total of 23 up-regulated and 71 down-regulated mrDEGs were identified and validated. Enrichment analyses indicated that mrDEGs were associated with several cancer-related biological processes, Moreover, 9 hub mrDEGs were identified and validated in tissues. Finally, 5 hub coregulated mrDEGs, 21 miRNA and 117 TF were used to construct TF-miRNA-hub mrDEGs network. MAZ, HDGF and SP2 could regulate 3 hub mrDEGs. hsa-mir-21-5p, hsa-mir-1-3p, hsa-mir-218-5p, hsa-mir-26a-5p, and hsa-mir-335-5p regulated 2 hub mrDEGs. Overall survival analysis suggested that the up-regulated FN1 and down-regulated DDR2 conferred to poor BC prognosis. ConclusionTF-miRNA-hub mrDEGs has instruction significance for the etiology exploration of BC. The identified hub mrDEGs, such as FN1 and DDR2, were likely to regulate mitochondrial function and might be novel biomarkers of BC diagnosis and prognosis as well as the therapeutic targets.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yucheng Zhang ◽  
Yali Wang

Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver and carries high morbidity and mortality. Diagnosing HCC at an early stage is challenging. Therefore, finding new, highly sensitive and specific diagnostic biomarkers for the diagnosis and prognosis of HCC patients is extremely important. Circular RNAs (circRNAs) are a class of non-coding RNAs with covalently closed loop structures. They are characterized by remarkable stability, long half-life, abundance and evolutionary conservation. Recent studies have shown that many circRNAs are expressed aberrantly in HCC tissues and have important regulatory roles during the development and progression of HCC. Hence, circRNAs are promising biomarkers for the diagnosis and prognosis of HCC. This review: (i) summarizes the biogenesis, categories, and functions of circRNAs; (ii) focuses on current progress of dysregulated expression of circRNAs in HCC with regard to regulation of the tumor hallmarks, “stemness” of cancer cells, and immunotherapy; (iii) highlights circRNAs as potential biomarkers and therapeutic targets for HCC; and (iv) discusses some of the challenges, questions and future perspectives of circRNAs research in HCC.


Sign in / Sign up

Export Citation Format

Share Document