Natural DNA Intercalators as Promising Therapeutics for Cancer and Infectious Diseases

2020 ◽  
Vol 20 (1) ◽  
pp. 19-32 ◽  
Author(s):  
Martyna Godzieba ◽  
Slawomir Ciesielski

Cancer and infectious diseases are one of the greatest challenges of modern medicine. An unhealthy lifestyle, the improper use of drugs, or their abuse are conducive to the increase of morbidity and mortality caused by these diseases. The imperfections of drugs currently used in therapy for these diseases and the increasing problem of drug resistance have forced a search for new substances with therapeutic potential. Throughout history, plants, animals, fungi and microorganisms have been rich sources of biologically active compounds. Even today, despite the development of chemistry and the introduction of many synthetic chemotherapeutics, a substantial part of the new compounds being tested for treatment are still of natural origin. Natural compounds exhibit a great diversity of chemical structures, and thus possess diverse mechanisms of action and molecular targets. Nucleic acids seem to be a good molecular target for substances with anticancer potential in particular, but they may also be a target for antimicrobial compounds. There are many types of interactions of small-molecule ligands with DNA. This publication focuses on the intercalation process. Intercalators are compounds that usually have planar aromatic moieties and can insert themselves between adjacent base pairs in the DNA helix. These types of interactions change the structure of DNA, leading to various types of disorders in the functioning of cells and the cell cycle. This article presents the most promising intercalators of natural origin, which have aroused interest in recent years due to their therapeutic potential.

2020 ◽  
Vol 9 (10) ◽  
pp. e9189109237
Author(s):  
Daniel Furtado Silva ◽  
Ana Carolina Lyra de Albuquerque ◽  
Edeltrudes de Oliveira Lima ◽  
Fernando Martins Baeder ◽  
Anibal Barbosa Henrique Luna ◽  
...  

With the evolution of bacterial resistance over conventional antimicrobials and the development of new antimicrobials, the search for new compounds of natural origin has intensified, since plants with therapeutic potential constitute a source of new biologically active compounds, encouraging the development of new therapeutic options. The objective of this study was to evaluate the antibacterial and anti-adherent activity of the ethanolic extract of Praxelis clematidea (Griseb.) R.M. King & Robinson (Asteraceae) on strains of Staphylococcus aureus, Streptococcus pneumoniae, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis. Tests were carried out to determine the MIC and MBC by means of broth microdilution in 96-well plates, and to determine the MICA, a technique with inclined tubes in the presence of 5% sucrose was used. It was observed that the ethanolic extract of P. clematidea has strong bactericidal activity on K. pneumoniae, and moderate bactericidal activity on S. pneumoniae and E. faecalis. Being able to inhibit adherence to K. pneumoniae strains. Thus, the ethanolic extract of P. clematidea proves to be effective as an antimicrobial in the control and prevention of infections by S. pneumoniae, K. pneumoniae and E. faecalis. It also has an effective anti-adherent effect on K. pneumoniae strains.


Author(s):  
Neha V. Bhilare ◽  
Pratibha B. Auti ◽  
Vinayak S. Marulkar ◽  
Vilas J. Pise

: Thiophenes are one among the abundantly found heterocyclic ring systems in many biologically active compounds. Moreover various substituted thiophenes exert numerous pharmacological actions on account of their isosteric resemblance with compounds of natural origin thus rendering them with diverse actions like antibacterial, antifungal, antiviral, anti-inflammatory, analgesic, antiallergic, hypotensives etc.. In this review we specifically explore the chemotherapeutic potential of variety of structures consisting of thiophene scaffolds as prospective anticancer agents.


2020 ◽  
Vol 7 (2) ◽  
pp. 89-94
Author(s):  
Jianjun Sun

The COVID-19 pandemic has caused millions of infections and hundreds of thousands deaths in the world. The pandemic is still ongoing and no specific antivirals have been found to control COVID-19. The integration of Traditional Chinese Medicine with supportive measures of Modern Medicine has reportedly played an important role in the control of COVID-19 in China. This review summarizes the evidence of TCM in the treatment of COVID-19 and discusses the plausible mechanism of TCM in control of COVID-19 and other viral infectious diseases.


2020 ◽  
Vol 06 ◽  
Author(s):  
Sayed Md Mumtaz ◽  
Madhu Gupta ◽  
Ramesh K. Goyal

Abstract:: The placenta that maintains and regulates the growth of fetus, consists of various biological treasures nutrients such as cytomedines, vitamins, trace elements, amino acids, peptides, growth factors and other biologically active constituents. Their therapeutic usefulness can well define in the terms of biochemical mechanisms of various components present in it. Biomedical waste derived extract is also a panacea for treatment of various diseases. Placental therapy has been reported specifically to have potent action on recovery of diseases and tissue regeneration. Placental bioactive components and their multi targeting identity prompted us to compile the précised information on placental extract products. However, some findings are needed to be explored by scientific community to prove their clinical potential with clinically significant statistical conclusions. In the light of available information and the usefulness of the placental extract, it is necessary for the development of various formulations for various unmet meet for the treatment as well as access their adverse effects as well as contradictions and precisely evaluated in the short and in the long-term periods.


Synthesis ◽  
2021 ◽  
Author(s):  
Stefan H. Bossmann ◽  
Raul Neri

AbstractIsoselenocyanates (ISCs) are a class of organoselenium compounds that have been recognized as potential chemotherapeutic and chemopreventative agents against cancer(s) and infectious diseases. ISC compounds are chemically analogous to their isosteric relatives, isothiocyanates (ITCs); however, they possess increased biological activity, such as enhanced cytotoxicity against cancer cells. ISCs not only serve as significant products, but also as precursors and essential intermediates for a variety of organoselenium compounds, such as selenium-containing heterocycles, which are biologically active. While syntheses of ISCs have become less difficult to accomplish, the syntheses of selenium-containing heterocycles are often difficult due to the use of highly toxic selenium reagents. Because of this, ISCs can serve as versatile reagents for the preparation of these heterocycles. In this review, the classical and recent syntheses of ISCs will be discussed, along with notable and recent synthetic work employing ISCs to access novel selenium-containing heterocycles.1 Introduction1.1 Selenium and Health2 Isoselenocyanates2.1 Preparation of Isoselenocyanates3 Selenium-Containing Heterocycles3.1 Notable Synthetic Work3.2 Recent Synthetic Work3.2.1 Synthesis of N-(3-Methyl-4-phenyl-3H-selenazol-2-ylidene)benzamide­ Derivatives3.2.2 Synthesis and X-ray Studies of Diverse Selenourea Derivatives3.2.3 Synthesis of Heteroarene-Fused [1,2,4]Thiadiazoles/Selenadiazoles via Iodine-Promoted [3+2] Oxidative Cyclization3.2.4 2-Amino-1,3-selenazole Derivatives via Base-Promoted Multicomponent Reactions4 Conclusion


2021 ◽  
Vol 22 (4) ◽  
pp. 1883
Author(s):  
Coralia Cotoraci ◽  
Alina Ciceu ◽  
Alciona Sasu ◽  
Anca Hermenean

Anemia, characterized by a decrease of the hemoglobin level in the blood and a reduction in carrying capacity of oxygen, is a major public health problem which affects people of all ages. The methods used to treat anemia are blood transfusion and oral administration of iron-based supplements, but these treatments are associated with a number of side effects, such as nausea, vomiting, constipation, and stomach pain, which limit its long-term use. In addition, oral iron supplements are poorly absorbed in the intestinal tract, due to overexpression of hepcidin, a peptide hormone that plays a central role in iron homeostasis. In this review, we conducted an analysis of the literature on biologically active compounds and plant extracts used in the treatment of various types of anemia. The purpose of this review is to provide up-to-date information on the use of these compounds and plant extracts, in order to explore their therapeutic potential. The advantage of using them is that they are available from natural resources and can be used as main, alternative, or adjuvant therapies in many diseases, such as various types of anemia.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1929
Author(s):  
Eva M. Huber ◽  
Michael Groll

At the heart of the ubiquitin–proteasome system, the 20S proteasome core particle (CP) breaks down the majority of intracellular proteins tagged for destruction. Thereby, the CP controls many cellular processes including cell cycle progression and cell signalling. Inhibitors of the CP can suppress these essential biological pathways, resulting in cytotoxicity, an effect that is beneficial for the treatment of certain blood cancer patients. During the last decade, several preclinical studies demonstrated that selective inhibition of the immunoproteasome (iCP), one of several CP variants in mammals, suppresses autoimmune diseases without inducing toxic side effects. These promising findings led to the identification of natural and synthetic iCP inhibitors with distinct chemical structures, varying potency and subunit selectivity. This review presents the most prominent iCP inhibitors with respect to possible scientific and medicinal applications, and discloses recent trends towards pan-immunoproteasome reactive inhibitors that cumulated in phase II clinical trials of the lead compound KZR-616 for chronic inflammations.


2020 ◽  
Vol 5 (8) ◽  
Author(s):  
Fidele Ntie-Kang ◽  
Daniel Svozil

AbstractThe discovery of a new drug is a multidisciplinary and very costly task. One of the major steps is the identification of a lead compound, i.e. a compound with a certain degree of potency and that can be chemically modified to improve its activity, metabolic properties, and pharmacokinetics profiles. Terrestrial sources (plants and fungi), microbes and marine organisms are abundant resources for the discovery of new structurally diverse and biologically active compounds. In this chapter, an attempt has been made to quantify the numbers of known published chemical structures (available in chemical databases) from natural sources. Emphasis has been laid on the number of unique compounds, the most abundant compound classes and the distribution of compounds in terrestrial and marine habitats. It was observed, from the recent investigations, that ~500,000 known natural products (NPs) exist in the literature. About 70 % of all NPs come from plants, terpenoids being the most represented compound class (except in bacteria, where amino acids, peptides, and polyketides are the most abundant compound classes). About 2,000 NPs have been co-crystallized in PDB structures.


2021 ◽  
Vol 28 ◽  
Author(s):  
Jiahua Cui ◽  
Jiajun Qian ◽  
Larry Ming-Cheung Chow ◽  
Jinping Jia

Background: The proposed central role of cancer stem cells (CSCs) in tumor development has been extended to explain the diverse oncologic phenomena such as multidrug resistance, metastasis and tumor recurrence in clinics. Due to the enhanced expression of ATP-binding cassette transporters and anti-apoptotic factors, stagnation on G0 phase and the strong ability of self-renewal, the CSCs were highly resistant to clinical anticancer drugs. Therefore, the discovery of new drug candidates that could effectively eradicate cancer stem cells afforded promising outcomes in cancer therapy. Introduction: Natural products and their synthetic analogues are a rich source of biologically active compounds and several of them have already been recognized as potent CSCs killers. We aim to provide a collection of recently identified natural products that suppressed the survival of the small invasive CSC populations and combated the drug resistance of these cells in chemotherapy. Results and Conclusion: These anti-CSCs natural products included flavonoids, stilbenes, quinones, terpenoids, polyketide antibiotics, steroids and alkaloids. In the present review, we highlighted the therapeutic potential of natural products and their derivatives against the proliferation and drug resistance of CSCs, their working mechanisms and related structure-activity relationships. Meanwhile, in this survey, several natural products with diverse cellular targets such as the naphthoquinone shikonin and the stilbene resveratrol were characterized as promising lead compounds for future development.


Author(s):  
Yogita Chowdhary

Aegle marmelos (Bilva) is being used in Ayurveda for the treatment of several inflammatory disorders. The plant is a member of a fixed dose combination of Dashamoola in Ayurveda. However, the usage of roots/root bark or stems is associated with sustainability concerns. Bael (Aegle marmelos (L.) Corr.) is an important medicinal plant of India. Leaves, fruits, stem and roots of A. marmelos have been used in ethno medicine to exploit its' medicinal properties including astringent, antidiarrheal antidysenteric, demulcent, antipyretic and anti-inflammatory activities. Compounds purified from bael have been proven to be biologically active against several major diseases including cancer, diabetes and cardiovascular diseases. Preclinical studies indicate the therapeutic potential of crude extracts of A. marmelos in the treatment of many microbial diseases, diabetes and gastric ulcer. This review covers the biological activities of some isolated chemical constituents of A. marmelos and preclinical studies on some crude extracts and pure compounds to explore novel bioactive compounds for therapeutic application. Aegle marmelos (L.) is a seasonal fruit that contains significant amounts of bioactives like, phenolic acids (gallic acids, 2,3-dihydroxy benzoic acid, chlorogenic acid, p-coumaric acid, vanillic acid), flavonoid (rutin), organic acids (oxalic acid, tartaric acid, malic acid, lactic acid, acetic acid, citric acid, propionic acid, succinic acid, fumaric acid), vitamin C, vitamin B group (thiamine, niacin, pyridoxine, pantothenic acid, biotin, cobalamins, riboflavin), tocopherols (α-tocopherol, β-tocopherol, γ-tocopherol, δ-tocopherol), carotenes (α-carotene, β-carotene, γ-carotene, δ-carotene) and also rich in essential minerals (potassium, calcium, phosphorus, sodium, iron, copper, manganese). Hence the use of aegle plays important role as anti-inflammatory.


Sign in / Sign up

Export Citation Format

Share Document