Protein Markers in Osteoporosis

2020 ◽  
Vol 27 (12) ◽  
pp. 1253-1259 ◽  
Author(s):  
Teresa Porcelli ◽  
Letizia Pezzaioli ◽  
Andrea Delbarba ◽  
Filippo Maffezzoni ◽  
Carlo Cappelli ◽  
...  

: Osteoporosis is a systemic skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue. Biomarkers of bone turnover have been used for years in bone disease management, especially to determine response to treatment. They are substances found in biological fluids, produced during the bone remodelling process. Recently, new approaches for the detection of bone physiology and pathology biomarkers have been proposed, among which proteomics, with particular interest in osteoporosis. The objective of this manuscript is to review current knowledge on proteomics applied to osteoporosis in vivo. The analysis of the 14 studies published to date showed a range of proteins whose expression is altered in patients with osteoporosis. The relatively small number of papers depends mainly on high costs and technical limitations; due to the difficulty to collect osteoclasts, most of the studies performed proteomics on peripheral blood monocytes (PBMs), already accepted as an excellent osteoporosis cell model in vivo. Among the identified proteins, the most promising are represented by Gelsolin (GSN), Annexin A2 (ANXA2), and Prolyl 4-hydroxylase (P4HB). They have been related to bone mineral density (BMD), sometimes in apparent disagreement (some upregulated and others downregulated in patients with low BMD). : Finally, worthy of mention is the application of proteomics in the emerging field of microvesicles (MVs); they are important messengers, widely present in body fluids, and have recently emerged as novel targets for the diagnosis of multiple diseases, among which musculoskeletal diseases. In conclusion, the proteomic field is relatively novel in osteoporosis and has a considerable but theoretical potential; further investigations are needed in order to make proteome-derived markers applicable to clinical practice.

2016 ◽  
Vol 39 (5) ◽  
pp. 1977-2000 ◽  
Author(s):  
Etheresia Pretorius ◽  
Jeanette N. du Plooy ◽  
Janette Bester

Erythrocytes (RBCs) are extremely sensitive cells, and although they do not have nuclei and mitochondria, are important health indicators. This is particularly true because, during inflammation, whether it is systemic or chronic, the haematological system is constantly exposed to circulating inflammatory mediators. RBCs have a highly specialized and organized membrane structure, which interacts and reacts to inflammatory molecule insults, and undergo programmed cell death, similar to apoptosis, known as eryptosis. Over the past years, eryptosis studies have focussed on determining if membrane changes have occurred, particularly whether a phosphatidylserine (PS) flip, Ca2+ leakage into the cell, changes to ceramide and cell shrinkage have occurred. Mostly, flow cytometry is used, but confocal microscopy and ultrastructural studies also confirm eryptosis. Here, we provide a comprehensive overview of eryptosis, where we revisit the biochemical process of the process, review all literature in PUBMED, that is shown under the search word, “eryptosis”, and also discuss current methodologies to determine the presence of eryptosis; included in the discussion of the methodologies, we discuss a pitfalls section for each method. This paper is therefore a comprehensive synopsis of current knowledge of eryptosis and discusses how RBCs may provide an essential in vivo cell model system to study not only inflammation in disease, but also track disease progression and treatment regimes.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15594-e15594
Author(s):  
Scott Strum ◽  
Laszlo Gyenis ◽  
David W Litchfield

e15594 Background: Protein kinase CSNK2 (CK2) is a pleiotropic serine/threonine kinase whose expression levels are frequently elevated in solid and hematologic malignancies. CSNK2 has been discovered to hold prognostic and therapeutic significance across multiple cancers and is an excellent target for oncology research. This systematic review summarizes the current knowledge from in vitro and in vivo studies on the biology of this kinase in cancer alongside pre-clinical/clinical investigations from 24 different human cancer types. Methods: PRISMA methodology was used to generate a study protocol and building-block search strategy, from which a total of 796 publications in PubMed were retrieved across 24 human cancers. 245 of these publications met both screening and inclusion criteria. Data was then systematically extracted, including information about CSNK2 subunit mRNA/protein/activity levels, phosphorylation targets, phenotypic changes, in vivo studies, and prognostic/therapeutic data. The data was thereafter summarized and analyzed. Results: Five targets phosphorylated by CSNK2 were identified in at least 4 cancers: AKT, STAT3, RELA, PTEN, and TP53. The most heavily cited was AKT, identified in 15 cancers. Phenotypically, behaviors influenced by CSNK2 that were reported in 11 or more cancers included: evasion of apoptosis, enhancement of proliferation, enhancement of invasion/metastasis, and cell cycle control. Interestingly, these pathways correlated heavily with the most commonly cited CSNK2 targets. From a clinical perspective, CSNK2 held prognostic significance in 17 of the cancers. Additionally, xenograft experiments were found to have been performed in 13 cancers where CSNK2 inhibition resulted in a positive response to treatment. Lastly, early studies have shown promising results through the clinical application of CSNK2-specific inhibitors, with several clinical trials now underway for further assessment. Conclusions: Overall, our analysis supports CSNK2 as an attractive target for cancer therapy and points to specific areas where additional investigation is critical to advance our understanding of CSNK2 biology. The design of targeted therapies by exploiting the pathophysiology of CSNK2 has the potential to generate impactful treatment strategies across a wide range of cancers, promising exciting new discoveries scientifically and clinically.


2021 ◽  
Author(s):  
Xu JiaQiang ◽  
Ran Gao ◽  
Wen Liang ◽  
ChangJian Wu ◽  
FangLing Li ◽  
...  

Abstract Objective: Curcumin has good anti-inflammatory and antioxidant properties, and whether it can resist osteoporosis through oxidative stress pathway in a dose-dependent manner.Method: we used an oxidative stress cell model by culture cells with hydrogen peroxide (H2O2), cells were osteogenic differentiation after treated with H2O2,different concentration curcumin were added during differentiation, then measured the early and late osteogenic index, and detected the potential signaling pathway involved. In addition, we employed rat OVX model treated with curcumin to confirm the protection of the anti-oxidant.Result: Low concentrations of curcumin (1-10μM) promoted the proliferation of MC3T3-E1 cells, improved alkaline phosphatase (ALP) activity, elevated calcium content against oxidative stress induced by H2O2, but high concentration (20 μM) failed, moreover, curcumin diminished supernatant receptor activator of nuclear factor kappa-B ligand (RANKL) and IL-6 expression, inhibited the intracellular ROS triggered by H2O2, Notably, curcumin exerted protection by blocking the NF-κB signaling pathway. The curcumin administered for 12 weeks partially reversed the raito of blood malondialdehyde (MDA) and glutathione (GSH) activity in ovariectomized (OVX) rat in vivo. It also increased the bone mineral density (BMD) and improved the micro-architecture of trabecular bones. Conclusion: curcumin exerted protection on osteoporosis, the effect linked to a reduction of oxidative stress and bone resorbing cytokine, This study suggests that curcumin might be a candidate for osteoporosis prevention and the low concentration exerted obviously protection.


2019 ◽  
Vol 133 (20) ◽  
pp. 2045-2059 ◽  
Author(s):  
Da Zhang ◽  
Xiuli Wang ◽  
Siyao Chen ◽  
Selena Chen ◽  
Wen Yu ◽  
...  

Abstract Background: Pulmonary artery endothelial cell (PAEC) inflammation is a critical event in the development of pulmonary arterial hypertension (PAH). However, the pathogenesis of PAEC inflammation remains unclear. Methods: Purified recombinant human inhibitor of κB kinase subunit β (IKKβ) protein, human PAECs and monocrotaline-induced pulmonary hypertensive rats were employed in the study. Site-directed mutagenesis, gene knockdown or overexpression were conducted to manipulate the expression or activity of a target protein. Results: We showed that hydrogen sulfide (H2S) inhibited IKKβ activation in the cell model of human PAEC inflammation induced by monocrotaline pyrrole-stimulation or knockdown of cystathionine γ-lyase (CSE), an H2S generating enzyme. Mechanistically, H2S was proved to inhibit IKKβ activity directly via sulfhydrating IKKβ at cysteinyl residue 179 (C179) in purified recombinant IKKβ protein in vitro, whereas thiol reductant dithiothreitol (DTT) reversed H2S-induced IKKβ inactivation. Furthermore, to demonstrate the significance of IKKβ sulfhydration by H2S in the development of PAEC inflammation, we mutated C179 to serine (C179S) in IKKβ. In purified IKKβ protein, C179S mutation of IKKβ abolished H2S-induced IKKβ sulfhydration and the subsequent IKKβ inactivation. In human PAECs, C179S mutation of IKKβ blocked H2S-inhibited IKKβ activation and PAEC inflammatory response. In pulmonary hypertensive rats, C179S mutation of IKKβ abolished the inhibitory effect of H2S on IKKβ activation and pulmonary vascular inflammation and remodeling. Conclusion: Collectively, our in vivo and in vitro findings demonstrated, for the first time, that endogenous H2S directly inactivated IKKβ via sulfhydrating IKKβ at Cys179 to inhibit nuclear factor-κB (NF-κB) pathway activation and thereby control PAEC inflammation in PAH.


2018 ◽  
Author(s):  
Madushani Dharmarwardana ◽  
André F. Martins ◽  
Zhuo Chen ◽  
Philip M. Palacios ◽  
Chance M. Nowak ◽  
...  

Superoxide overproduction is known to occur in multiple disease states requiring critical care yet non-invasive detection of superoxide in deep tissue remains a challenge. Herein, we report a metal-free magnetic resonance imaging (MRI) and electron paramagnetic resonance (EPR) active contrast agent prepared by “click conjugating” paramagnetic organic radical contrast agents (ORCAs) to the surface of tobacco mosaic virus (TMV). While ORCAs are known to be reduced <i>in vivo</i> to an MRI/EPR silent state, their oxidation is facilitated specifically by reactive oxygen species—in particular superoxide—and are largely unaffected by peroxides and molecular oxygen. Unfortunately, single molecule ORCAs typically offer weak MRI contrast. In contrast, our data confirm that the macromolecular ORCA-TMV conjugates show marked enhancement for <i>T<sub>1</sub></i> contrast at low field (<3.0 T), and <i>T<sub>2</sub></i> contrast at high field (9.4 T). Additionally, we demonstrated that the unique topology of TMV allows for “quenchless fluorescent” bimodal probe for concurrent fluorescence and MRI/EPR imaging, which was made possible by exploiting the unique inner and outer surface of the TMV nanoparticle. <a>Finally, we show TMV-ORCAs do not respond to normal cellular respiration, minimizing the likelihood for background, yet still respond to enzymatically produced superoxide in complicated biological fluids like serum.</a>


2020 ◽  
Vol 25 (42) ◽  
pp. 4510-4522 ◽  
Author(s):  
Biancamaria Longoni ◽  
Irene Fasciani ◽  
Shivakumar Kolachalam ◽  
Ilaria Pietrantoni ◽  
Francesco Marampon ◽  
...  

: Exosomes are extracellular vesicles produced by eukaryotic cells that are also found in most biological fluids and tissues. While they were initially thought to act as compartments for removal of cellular debris, they are now recognized as important tools for cell-to-cell communication and for the transfer of pathogens between the cells. They have attracted particular interest in neurodegenerative diseases for their potential role in transferring prion-like proteins between neurons, and in Parkinson’s disease (PD), they have been shown to spread oligomers of α-synuclein in the brain accelerating the progression of this pathology. A potential neuroprotective role of exosomes has also been equally proposed in PD as they could limit the toxicity of α-synuclein by clearing them out of the cells. Exosomes have also attracted considerable attention for use as drug vehicles. Being nonimmunogenic in nature, they provide an unprecedented opportunity to enhance the delivery of incorporated drugs to target cells. In this review, we discuss current knowledge about the potential neurotoxic and neuroprotective role of exosomes and their potential application as drug delivery systems in PD.


2020 ◽  
Vol 17 ◽  
Author(s):  
Shuyuan Li ◽  
Yue Tang ◽  
Yushun Dou

Background: Exosomes, one of the extracellular vesicles, are widely present in all biological fluids and play an important role in intercellular communication. Because of its hydrophobic lipid bilayer and aqueous hydrophilic core structure, it is considered a possible alternative to liposome drug delivery systems. Not only do they protect the cargo like liposomes during delivery, they are less toxic and better tolerated. However, due to the lack of sources and methods for obtaining enough exosomes, the therapeutic application of exosomes as drug carriers is limited. Methods: A literature search was performed using the ScienceDirect and PubMed electronic databases to obtain information from published literature on milk exosomes related to drug delivery. Results: Here, we briefly reviewed the current knowledge of exosomes, expounded the advantages of milk-derived exosomes over other delivery vectors, including a higher yield, the oral delivery characteristic and additional therapeutic benefits. The purification and drug loading methods of milk exosomes, and the current application of milk exosomes were also introduced. Conclusion: The emergence of milk-derived exosomes is expected to break through the limitations of exosomes as therapeutic carriers of drugs. We hope to raise awareness of the therapeutic potential of milk-derived exosomes as a new drug delivery system.


2020 ◽  
Vol 20 ◽  
Author(s):  
Nur Najmi Mohamad Anuar ◽  
Nurul Iman Natasya Zulkafali ◽  
Azizah Ugusman

: Matrix metalloproteinases (MMPs) are a group of zinc-dependent metallo-endopeptidase that are responsible towards the degradation, repair and remodelling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic and food industries. This review summarises the current knowledge on plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signalling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviours, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.


2019 ◽  
Vol 14 (4) ◽  
pp. 305-319 ◽  
Author(s):  
Marietta Herrmann ◽  
Franz Jakob

The bone marrow hosts skeletal progenitor cells which have most widely been referred to as Mesenchymal Stem or Stromal Cells (MSCs), a heterogeneous population of adult stem cells possessing the potential for self-renewal and multilineage differentiation. A consensus agreement on minimal criteria has been suggested to define MSCs in vitro, including adhesion to plastic, expression of typical surface markers and the ability to differentiate towards the adipogenic, osteogenic and chondrogenic lineages but they are critically discussed since the differentiation capability of cells could not always be confirmed by stringent assays in vivo. However, these in vitro characteristics have led to the notion that progenitor cell populations, similar to MSCs in bone marrow, reside in various tissues. MSCs are in the focus of numerous (pre)clinical studies on tissue regeneration and repair.Recent advances in terms of genetic animal models enabled a couple of studies targeting skeletal progenitor cells in vivo. Accordingly, different skeletal progenitor cell populations could be identified by the expression of surface markers including nestin and leptin receptor. While there are still issues with the identity of, and the overlap between different cell populations, these studies suggested that specific microenvironments, referred to as niches, host and maintain skeletal progenitor cells in the bone marrow. Dynamic mutual interactions through biological and physical cues between niche constituting cells and niche inhabitants control dormancy, symmetric and asymmetric cell division and lineage commitment. Niche constituting cells, inhabitant cells and their extracellular matrix are subject to influences of aging and disease e.g. via cellular modulators. Protective niches can be hijacked and abused by metastasizing tumor cells, and may even be adapted via mutual education. Here, we summarize the current knowledge on bone marrow skeletal progenitor cell niches in physiology and pathophysiology. We discuss the plasticity and dynamics of bone marrow niches as well as future perspectives of targeting niches for therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document