scholarly journals Mechanical Properties of Manufactured-Sand Concrete after High Temperatures

2015 ◽  
Vol 9 (1) ◽  
pp. 1007-1011
Author(s):  
Zhengfa Chen ◽  
Hehua Zhu ◽  
Zhiguo Yan ◽  
Gaojv Peng

In this paper, to study mechanical properties of manufactured-sand concrete after high temperatures, experiments on the residual strength of manufactured-sand concrete were carried out under high temperatures in which raw materials performances and concrete mixture proportion were considered. The mechanism of elevated temperatures on residual strength was theoretically discussed, and the calculation formula of residual strength was given. The results indicated that with the increasing of temperature, the mass loss was small while the reducing of strength and the elastic modulus of manufactured-sand concrete were significantly.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Qifang Xie ◽  
Lipeng Zhang ◽  
Shenghua Yin ◽  
Baozhuang Zhang ◽  
Yaopeng Wu

Fires are always known for seriously deteriorating concrete in structures, especially for those with certain carbonation due to long-time service. In this paper, 75 prism specimens were prepared and divided into four groups (three carbonated groups and one uncarbonated group). Specimens were tested under different temperatures (20, 300, 400, 500, 600, and 700°C), exposure times (3, 4, and 6 hours), and cooling methods (water and natural cooling). Surface characteristics, weight loss rate, and residual mechanical properties (strength, initial elastic modulus, peak, and ultimate compressive strains) of carbonated concrete specimens after elevated temperatures were investigated and compared with that of the uncarbonated ones. Results show that the weight loss rates of the carbonated concrete specimens are slightly lower than that of the uncarbonated ones and that the cracks are increased with raising of temperatures. Surface colors of carbonated concrete are significantly changed, but they are not sensitive to cooling methods. Surface cracks can be evidently observed on carbonated specimens when temperature reaches 400°C. Residual compressive strength and initial elastic modulus of carbonated concrete after natural cooling are generally larger than those cooled by water. The peak and ultimate compressive strains of both carbonated and uncarbonated concrete specimens increase after heating, but the values of the latter are greater than that of the former. Finally, the constitutive equation to predict the compressive behaviors of carbonated concrete after high temperatures was established and validated by tests.


2021 ◽  
Vol 11 (24) ◽  
pp. 11833
Author(s):  
Su-Hyeon Lee ◽  
Byong-Jeong Choi

Studies involving the mechanical properties of high-strength steel (HSS) at elevated temperatures have received considerable attention in recent years. However, current research on HSS at high temperatures is lacking. As a result, the design of fire-protective steel structures with high standards is not sufficiently conservative or safe. This study investigates the effect that elevated temperatures have on the mechanical properties of ASTM A572 Gr. 50 and 60 steels. Reduction factors for the yield strength, tensile strength, and elastic modulus were derived and compared with the standard (AISC, EN1993-1-2) and previous studies (NIST). This study also provides extensive data on the reduction factors for the yield strength, tensile strength, and elastic modulus of mild steel (MS), HSS, and very-high-strength steel (VHSS). The reduction factor for the yield strength was analyzed by expanding the strain level up to 20%. Equations for the yield strength, tensile strength, and elastic modulus were proposed. In future studies, various strains should be analyzed according to the grade of the steel, with the derivation of a reduction factor that considers the plastic strain of the steel. Hence, the findings reported in this study generated a database that can be applied to fire safety design or performance-based fire-resistant design.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1473
Author(s):  
Jun Zhao ◽  
Kang Wang ◽  
Shuaibin Wang ◽  
Zike Wang ◽  
Zhaohui Yang ◽  
...  

This paper presents results from experimental work on mechanical properties of geopolymer concrete, mortar and paste prepared using fly ash and blended slag. Compressive strength, splitting tensile strength and flexural strength tests were conducted on large sets of geopolymer and ordinary concrete, mortar and paste after exposure to elevated temperatures. From Thermogravimetric analyzer (TGA), X-ray diffraction (XRD), Scanning electron microscope (SEM) test results, the geopolymer exhibits excellent resistance to elevated temperature. Compressive strengths of C30, C40 and C50 geopolymer concrete, mortar and paste show incremental improvement then followed by a gradual reduction, and finally reach a relatively consistent value with an increase in exposure temperature. The higher slag content in the geopolymer reduces residual strength and the lower exposure temperature corresponding to peak residual strength. Resistance to elevated temperature of C40 geopolymer concrete, mortar and paste is better than that of ordinary concrete, mortar and paste at the same grade. XRD, TGA and SEM analysis suggests that the heat resistance of C–S–H produced using slag is lower than that of sulphoaluminate gel (quartz and mullite, etc.) produced using fly ash. This facilitates degradation of C30, C40 and C50 geopolymer after exposure to elevated temperatures.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1052
Author(s):  
Buczkowska Katarzyna ◽  
Chi Hiep Le ◽  
Petr Louda ◽  
Szczypiński Michał ◽  
Totka Bakalova ◽  
...  

This paper reports the results of an experimental investigation on the mechanical properties of geopolymer foams incorporating filler from the coke dust waste (CDW). In this work, CDW was used to replace a part of geopolymer paste at 5%, 10%, 20%, and 30% by geopolymer binder mass. The physico-mechanical properties and thermal resistance against high temperatures of CDW/geopolymer foams are presented. The primary results obtained show that the use of CDW in the production of geopolymer foam composites made it possible for them to achieve relatively good mechanical properties. However, the incorporation of the CDW into the geopolymer had a slightly negative effect on thermal conductivity, but significantly improved the mechanical strength of the final product. Moreover, this waste also helped the composite foam to achieve a structure with more uniform open pores distribution, compared to the pure foam. After exposure to elevated temperatures, the residual strength of the composite foams maintained well compared to the pure foams.


2013 ◽  
Vol 486 ◽  
pp. 406-411 ◽  
Author(s):  
Ondřej Holčapek ◽  
Pavel Reiterman ◽  
Petr Konvalinka

The following article deals with the study of mechanical properties of aluminous cement composites exposure to high temperatures. The newly designed mixtures that resist the action of high temperatures 1000 °C find their application in various fields of industrial production or in the form of fire wall for protection bearing structures. All the mechanical properties such as compressive strength and tensile strength in bending were measured on samples 160x40x40 mm. These samples were exposed to temperatures 600 °C and 1000 °C and one group of samples was reference and stayed in laboratory condition. Aluminous cement unlike the common Portland cement keeps sufficient strength even after high temperature exposure. For ensuring required ductility the basalt fibers were added to the mixture. In an effort to use of secondary raw materials as a replacement for cement as well as a suitable binder was used metakaolin and ground brick dust. Very convenient characteristics of these components are their latent hydraulic potential that makes interesting hydration products.


2013 ◽  
Vol 546 ◽  
pp. 81-83
Author(s):  
Xin Feng Wang ◽  
Qing Quan Liao ◽  
Fang Xie ◽  
Yi Tao

Electrode printing screen is an important component in electrode printing manufacturing equipment. Its mechanical properties directly related to printing electrode precision and equipment life, so it is necessary for calculation of mechanics performance analysis. In this paper, by using material mechanics knowledge, the equivalent elastic modulus calculation formula of electrode printing screen is derived and can be applied to mechanical analysis and calculation of electrode printing screen.


2018 ◽  
Vol 9 (3) ◽  
pp. 203-221 ◽  
Author(s):  
Muhammad Masood Rafi ◽  
Abdul Basit Dahar ◽  
Tariq Aziz

Purpose The purpose of this paper is to present the results of experimental testing of steel rebars at elevated temperatures. Three types of bars available in the local market in Pakistan were used. These data are not available in Pakistan. Design/methodology/approach Three types of bars were used, which included cold-twisted ribbed (CTR), hot-rolled deformed (HRD) and thermo-mechanically treated (TMT) bars. The diameter of the bar of each type was 16 mm. The bars were heated in an electrical furnace at temperatures which were varied from 100°C to 900°C in increment of 100°C. Bars of each type were also tested at ambient temperature as control specimens. The change of strength, strain and modulus of elasticity of the bars at high temperatures were determined. Findings The mechanical properties of the bars were nearly unaffected by the temperatures up to 200°C. CTR bars did not show yield plateau and strain hardening both at ambient and high temperatures. The high temperature yield strength and elastic modulus for all the three types of bars were similar at all temperatures. The yield plateau of both the HRD and TMT bars disappeared at temperatures greater than 300°C. The ultimate strength at high temperature of the HRD and TMT bars was also similar. The behaviours of the HRD and TMT bars changed to brittle beyond 400°C as compared to their behaviours at ambient temperature. The CTR bars exhibited ductile characteristics at failure at all the exposure temperatures relative to their behaviour at ambient temperature. Research limitations/implications The parameters of the paper included the rebar type and heating temperature and the effects of temperature on strength and stiffness properties of the steel bars. Practical implications Building fire incidents have increased in Pakistan. As reinforced concrete (RC) buildings exist in the country in significant numbers, the data related to elevated temperature properties of steel is required. These data are not available in Pakistan presently. The presented paper aims at providing this information for the design engineers to enable them to assess and increase fire resistance of RC structural members. Originality/value The presented paper is unique in its nature in that there is no published contribution to date, to the best of authors’ knowledge, which has been carried out to assess the temperature-dependent mechanical properties of steel reinforcing bars available in Pakistan.


Recycling of materials has become a major interest for engineers. At present, the amount of slag deposited in storage yard adds up to millions of tons/year leading to the occupation of farm land and serious pollution to the environment, as a result of the rapid growth in the steel industry. Steel slag is made at 1500- 1650°C having a honey comp shape with high porosity. Using steel slag as the natural aggregate with a lower waste material cost can be considered as a good alternative for sustainable constructions. The objective of this study is to evaluate the performance of residual mechanical properties of concrete with steel slag as coarse aggregate partial replacement after exposing to high temperatures .This study investigates the behavior of using granulated slag as partial or fully coarse aggregate replacement with different percentages of 0%, 15%, 30%, 50% and 100% in concrete when subjected to elevated temperatures. Six groups of concrete mixes were prepared using various replacement percentages of slag exposed to different temperatures of 400 °C, 600 °C and 800 °C for different durations of 1hr, 1.5hr and 2hr. Evaluation tests were compressive strength, tensile strength, and bond strength. The steel slag concrete mixes showed week workability lower than control mix. A systematic increasing of almost up to 21.7% in compressive strength, and 66.2% in tensile strength with increasing the percentage of steel slag replacement to 50%. And the results showed improvement on concrete residual mechanical properties after subjected to elevated temperatures with the increase of steel slag content. The findings of this study give an overview of the effect of steel slag coarse aggregate replacement on concrete after exposed to high temperatures.


2021 ◽  
Vol 293 ◽  
pp. 02033
Author(s):  
Xiaohui Li

Reusing of stone powder formed in the production of manufactured sand is of great significance to environmental protection and resource utilization. In this paper, C30 and C40 environment-friendly manufactured sand concrete were prepared by adding 6%, 9%, 12% and 15% of waste boulder powder from manufactured sand production line into concrete and controlling the total weight of manufactured sand and rock powder to be constant. The influence of stone powder on concrete fluidity, compressive strength and elastic modulus were analysed. It was found that with the increase of stone powder content, the compressive strength of fresh paste and C30 concrete first increased and then decreased, while the elastic modulus of concrete and the compressive strength of C40 concrete continued to decrease. It is suggested that the content of rock powder should not exceed 9%.


Sign in / Sign up

Export Citation Format

Share Document