scholarly journals Cardioprotective Effects of Nanoemulsions Loaded with Anti-Inflammatory Nutraceuticals against Doxorubicin-Induced Cardiotoxicity

Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1304 ◽  
Author(s):  
Vincenzo Quagliariello ◽  
Raffaele Vecchione ◽  
Carmela Coppola ◽  
Chiara Di Cicco ◽  
Alberta De Capua ◽  
...  

Doxorubicin is a highly active antineoplastic agent, but its clinical use is limited because of its cardiotoxicity. Although nutraceuticals endowed with anti-inflammatory properties exert cardioprotective activity, their bioavailability and stability are inconsistent. In an attempt to address this issue, we evaluated whether bioavailable nanoemulsions loaded with nutraceuticals (curcumin and fresh and dry tomato extracts rich in lycopene) protect cardiomyoblasts (H9C2 cells) from doxorubicin-induced toxicity. Nanoemulsions were produced with a high-pressure homogenizer. H9C2 cells were incubated with nanoemulsions loaded with different nutraceuticals alone or in combination with doxorubicin. Cell viability was evaluated with a modified MTT method. The levels of the lipid peroxidation products malondialdehyde (MDA) and 4-hydroxy-2-butanone (4-HNA), and of the cardiotoxic-related interleukins IL-6, IL-8, IL-1β and IL-10, tumor necrosis factor-alpha (TNF-α), and nitric oxide were analyzed in cardiomyoblasts. The hydrodynamic size of nanoemulsions was around 100 nm. Cell viability enhancement was 35–40% higher in cardiomyoblasts treated with nanoemulsion + doxorubicin than in cardiomyoblasts treated with doxorubicin alone. Nanoemulsions also protected against oxidative stress as witnessed by a reduction of MDA and 4-HNA. Notably, nanoemulsions inhibited the release of IL-6, IL-8, IL-1β, TNF-α and nitric oxide by around 35–40% and increased IL-10 production by 25–27% versus cells not treated with emulsions. Of the nutraceuticals evaluated, lycopene-rich nanoemulsions had the best cardioprotective profile. In conclusion, nanoemulsions loaded with the nutraceuticals described herein protect against cardiotoxicity, by reducing inflammation and lipid oxidative stress. These results set the stage for studies in preclinical models.

Author(s):  
Gazanfar Ahmad ◽  
Reyaz Hassan ◽  
Neerupma Dhiman ◽  
Asif Ali

Background: Pentacyclic triterpenoids are a biologically active class of phytoconstituents with diverse pharmacological activity including anti-inflammatory action. Objective: In the current study, we isolated 3-Acetylmyricadiol, a pentacyclic triterpenoid, from the ethyl acetate bark-extract of Myrica esculenta and evaluated it for anti-inflammatory potential. Methods: The ethyl acetate bark-extract of the M. esculenta was subjected to column chromatography to isolate 3-Acetylmyricadiol. MTT assay was performed to check cell viability. The production of proinflammatory mediators like Nitric oxide, IL-6, TNF-α was observed after administration of 5, 10, 20 μM of 3-Acetylmyricadiol in LPS-activated Raw 246.7 macrophages by the reported methods. Results: MTT assay indicated more than 90% cell viability up to 20 μM of 3-Acetylmyricadiol. The administration of 3-Acetylmyricadiol inhibited the production of Nitric oxide, IL-6, TNF-α in a dose-dependent manner significantly in comparison to LPS treated cells. The maximum effect was observed at 20 μM of 3-Acetylmyricadiol which resulted in 52.37, 63.10, 55.37 % inhibition of Nitric oxide, IL-6, TNF-α respectively. Conclusion: Our study demonstrated the anti-inflammatory action of 3-Acetylmyricadiol and can serve as a potential candidate in the development of the clinically efficient anti-inflammatory molecule.


2015 ◽  
Vol 93 (4) ◽  
pp. 253-260 ◽  
Author(s):  
Yu Zhang ◽  
Ruhong Yan ◽  
Yae Hu

Oxymatrine (OMT) is the quinolizidine alkaloid extracted from the Chinese herb Sophora flavescens Ait. that has many pharmacological effects and is used for the treatment of some inflammatory diseases. In this study, RAW264.7 cells and THP-1 differentiated macrophages were pretreated with various concentrations of OMT at 2 h prior to treatment with lipopolysaccharide (LPS) (1.0 μg/mL) for different durations. We detected the anti-inflammatory effect of OMT in LPS-stimulated macrophages and investigated the molecular mechanism. We showed that OMT pretreatment significantly inhibited the LPS-induced secretion of nitric oxide (NO), interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) in supernatant, attenuated the mRNA levels of inducible nitric oxide synthase (iNOS), IL-1β, TNF-α, and Toll-like receptor 4 (TLR4), increased TLR4 and phosphorylation of inhibitor of kappa B-alpha (p-IBα) in cytosol, and decreased the nuclear level of nuclear factor-κB (NF-κB) p65 in macrophages. In conclusion, OMT exerts anti-inflammatory properties in LPS-stimulated macrophages by down-regulating the TLR4/NF-κB pathway.


2021 ◽  
Vol 14 ◽  
Author(s):  
Yousef Faridvand ◽  
Maryam Nemati ◽  
Elham Zamani-Gharehchamani ◽  
Hamid Reza Nejabati ◽  
Arezoo Rezaie Nezhad Zamani ◽  
...  

Background: Dapagliflozin, a selective Sodium-glucose cotransporter-2 (SGLT2) inhibitor, has been shown to play a key role in the control and management of the metabolic and cardiac disease. Objective: The current study aims to address the effects of dapagliflozin on the expression of fractalkine (FKN), known as CX3CL1, and its receptors CX3CR1, Nuclear factor-kappa B(NF-κB) p65 activity, Reactive oxygen species (ROS), and inflammation in LPS-treated H9c2 cell line. Methods: H9c2 cells were cultured with lipopolysaccharide (LPS) to establish a model of LPS-induced damage and then subsequently were treated with dapagliflozin for 72 h. Our work included measurement of cell viability (MTT), Malondialdehyde (MDA), intracellular ROS, tumor necrosis factor-α (TNF-α), NF-κB activity, and expression CX3CL1/CX3CR1. Results: The results showed that LPS-induced reduction of cell viability was successfully rescued by dapagliflozin treatment. The cellular levels of MDA, ROS, and TNF-α, as an indication of cellular oxidative stress and inflammation, were significantly elevated in H9c2 cells compared to the control group. Furthermore, dapagliflozin ameliorated inflammation and oxidative stress through the modulation of the levels of MDA, TNF-α, and ROS. Correspondingly, dapagliflozin reduced the expression of CX3CL1/CX3CR1, NF-κB p65 DNA binding activity and it also attenuated nuclear acetylated NF-κB p65 in LPS-induced injury in H9c2 cells compared to untreated cells. Conclusion: These findings shed light on the novel pharmacological potential of dapagliflozin in the alleviation of LPS-induced CX3CL1/CX3CR1-mediated injury in inflammatory conditions such as sepsis-induced cardiomyopathy.


Marine Drugs ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 222 ◽  
Author(s):  
Wenhui Jin ◽  
Longhe Yang ◽  
Zhiwei Yi ◽  
Hua Fang ◽  
Weizhu Chen ◽  
...  

Palmitoylethanolamide (PEA) is an endogenous lipid mediator with powerful anti-inflammatory and analgesic functions. PEA can be hydrolyzed by a lysosomal enzyme N-acylethanolamine acid amidase (NAAA), which is highly expressed in macrophages and other immune cells. The pharmacological inhibition of NAAA activity is a potential therapeutic strategy for inflammation-related diseases. Fucoxanthinol (FXOH) is a marine carotenoid from brown seaweeds with various beneficial effects. However, the anti-inflammatory effects and mechanism of action of FXOH in lipopolysaccharide (LPS)-stimulated macrophages remain unclear. This study aimed to explore the role of FXOH in the NAAA–PEA pathway and the anti-inflammatory effects based on this mechanism. In vitro results showed that FXOH can directly bind to the active site of NAAA protein and specifically inhibit the activity of NAAA enzyme. In an LPS-induced inflammatory model in macrophages, FXOH pretreatment significantly reversed the LPS-induced downregulation of PEA levels. FXOH also substantially attenuated the mRNA expression of inflammatory factors, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), and markedly reduced the production of TNF-α, IL-6, IL-1β, and nitric oxide (NO). Moreover, the inhibitory effect of FXOH on NO induction was significantly abolished by the peroxisome proliferator-activated receptor α (PPAR-α) inhibitor GW6471. All these findings demonstrated that FXOH can prevent LPS-induced inflammation in macrophages, and its mechanisms may be associated with the regulation of the NAAA-PEA-PPAR-α pathway.


Herz ◽  
2019 ◽  
Vol 45 (S1) ◽  
pp. 130-138 ◽  
Author(s):  
T. Yu ◽  
D. Dong ◽  
J. Guan ◽  
J. Sun ◽  
M. Guo ◽  
...  

Abstract Background Clinical research has demonstrated that alprostadil has an anti-inflammatory effect; however, to date, its molecular mechanisms remain unclear. This study aimed to examine the anti-inflammatory activity and related mechanisms of alprostadil in lipopolysaccharide (LPS)-treated H9c2 cells. Methods Cell morphology was observed under an inverted light microscope, while cell viability was assessed with the 3‑(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. Enzyme-linked immunosorbent assays (ELISA) were conducted to study biochemical indicators of cellular damage, such as released lactate dehydrase (LDH) and troponin, and inflammatory cytokine levels including interleukin-1β (IL-1β), IL-6, IL-17, and tumor necrosis factor-α (TNF-α). The mRNA expression levels of Wnt5a, c‑jun N‑terminal kinase (JNK), and nuclear factor kappa B (NF-κB) were further investigated by real-time quantitative polymerase chain reaction (RT-PCR). The effects of alprostadil on the Wnt5a/JNK/NF-κB pathway in H9c2 cells was examined by Western blotting. Results Alprostadil increased the cell viability of LPS-stimulated H9c2 cells, reduced LDH and troponin production, and attenuated IL-1β, IL-6, IL-17, and TNF-α secretion. Moreover, alprostadil reduced the mRNA expression of Wnt5a, JNK, and NF-κB and decreased the expression of Wnt5a, NF-κB, and the ratio of p‑JNK/JNK in H9c2 cells treated with LPS. The siWnt5a or JNK inhibitor SP600125 significantly augmented the inhibitory effects of alprostadil on the Wnt5a/JNK/NF-κB pathway. Conclusion Our results show that alprostadil has anti-inflammatory effects and could attenuate LPS-induced injury in H9c2 cardiomyocytes via the Wnt5a/JNK/NF-κB pathway.


Author(s):  
Sayed Mizar Metwally Mizar ◽  
Magy Refaat Kozman ◽  
Ali Ahmed Abo-Saif ◽  
Basim Anwar Shehata Messiha

Background: The common antihypertensive angiotensin-converting enzyme (ACE) inhibitor captopril was reported to possess antioxidant and anti-inflammatory effects in different experimental models, diabetic vascular complications arises from increased vascular endothelial inflammation and oxidative stress as well as decreased nitric oxide bioavailability in the vessel walls due to poor glycemic control. Objective: This study aimed to evaluate the role of captopril and gliclazide in decreasing diabetes mellitus (DM) vascular complications caused by decreased cellular glucose uptake and impaired endothelial nitric oxide metabolism, as well as examine the effect of combination on diabetic renal complication and plasma lipid profile. Materials and methods: Adult male Wister rats received captopril (25 mg/kg/day) and/or gliclazide (10 mg/kg/day) by oral gavage daily for one month after induction of DM using streptozotocin (50 mg/kg, i.p., once). Serum glucose and insulin levels, inflammatory mediatory like TNF-α, oxidative stress biomarkers like glutathione and nitric oxide, and plasma lipid profile were measured. Besides, histopathological examination of thoracic aorta and kidney tissues, while Western blot assessed the expression of nitric oxide synthase (NOS) subtypes in the thoracic aorta. Results: Captopril significantly improved vascular architecture and oxidative stress and modulated nitric oxide synthesis via regulation of nitric oxide synthases, as well as decreased inflammation via down-regulating TNF-α, decreased systolic and diastolic blood pressure and improved serum lipid profile in diabetic rats. Gliclazide increased serum insulin and decreased serum glucose, as well as its antioxidant and anti-inflammatory effects. Discussion and conclusions: Captopril showed a promising protective effect against DM vascular complications, at least via nitric oxide modulating effect, antioxidant effect and anti-inflammatory activity that appeared in biochemical and histopathological findings, lipid profile, renal function and architecture improvements. Combining gliclazide with captopril gives an additive effect through enhanced glycemic control and increased anti-oxidant and anti-inflammatory properties above captopril alone.


Pharmacology ◽  
2019 ◽  
Vol 104 (3-4) ◽  
pp. 187-195 ◽  
Author(s):  
Xing Li ◽  
Peigen Xie ◽  
Yu Hou ◽  
Shudong Chen ◽  
Peiheng He ◽  
...  

Background/Aims: Tangeretin (TAN), a major phytochemical in tangerine peels and an important Chinese herb, has multiple biological properties, especially antioxidative and anti-inflammatory effects. However, the mechanisms remain unclear. Based on these findings, the aim of the present study was to assess the antioxidant and anti-inflammatory properties of TAN in bovine type II collagen-induced arthritis rats. Methods: TAN (50 mg/kg) was given orally once daily for 14 days. The effects of treatment were evaluated by biochemical assay (articular elastase, myeloperoxidase, end products of lipid peroxidation [MDA], antioxidant enzyme, such as superoxide dismutase, catalase, glutathione), nitric oxide, and inflammatory cytokines (interleukin-1β [IL-1β], ­IL-10, tumor necrosis factor-alpha [TNF-α], interferon-γ [IFN-γ], and prostaglandin E2 [PGE2]). The protective effects of TAN against rheumatoid arthritis (RA) were evident from the decrease in arthritis scoring. Furthermore, the Nrf-2 signaling pathway was assessed to illustrate the molecular mechanism. Results: TAN had therapeutic effects on RA by decreasing the oxidative stress damage and regulating inflammatory cytokine expression, including suppression of the accumulation of MDA products, decreasing the IL-1β, TNF-α, IFN-γ, and PGE2 levels, enhancing the IL-10 and the activity of antioxidant enzymes, which was through upregulating Nrf-2 signaling pathway. Conclusion: TAN might have potential as a therapeutic agent for the treatment of RA.


2021 ◽  
Vol 20 (10) ◽  
pp. 2029-2034
Author(s):  
Runqin Li ◽  
Dengfeng Ma ◽  
Zhihua Fu ◽  
Xiaoxuan Zheng ◽  
Wenxiu Li

Purpose: To investigate the effect of forsythiaside A on heart failure.Methods: An in vitro cell model of myocardial injury was established by incubating H9c2 primary cardiomyocytes with hydrogen peroxide (H2O2). Apoptosis was measured by flow cytometry. Expression of inflammatory factors, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), was determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and enzymelinkedimmunosorbent assay (ELISA). Oxidative stress was evaluated by measuring malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels by ELISA.Results: Incubation with H2O2 increased H9c2 cell apoptosis (p < 0.001). Treatment with forsythiaside A reduced Bax expression and enhanced Bcl-2 expression which suppressed apoptosis of H2O2- induced H9c2 cells. Forsythiaside A also attenuated the H2O2-induced increase in TNF-α and IL-6expressions in H9c2 cells (p < 0.001). The H2O2-induced increase in MDA and decrease in SOD and GSH-Px in H9c2 cells were reversed by treatment with forsythiaside A. IκBα protein expression was downregulated, whereas p65 phosphorylation (p-p65), p-IκBα, nuclear factor erythropoietin-2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1) were upregulated in H2O2-induced H9c2 cells. Forsythiaside A increased IκBα, Nrf2, and HO-1 expression and decreased p-p65 and p-IκBα expression in H2O2-induced H9c2 cells.Conclusion: Forsythiaside A exerts anti-inflammatory, anti-oxidant, and anti-apoptotic effects against H2O2-induced H9c2 cells through inactivation of NF-κB pathway and activation of Nrf2/HO-1 pathway. These results support the potential clinical application of forsythiaside A for the treatment of heart failure.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3573
Author(s):  
Lian-Chun Li ◽  
Zheng-Hong Pan ◽  
De-Sheng Ning ◽  
Yu-Xia Fu

Simonsinol is a natural sesqui-neolignan firstly isolated from the bark of Illicium simonsii. In this study, the anti-inflammatory activity of simonsinol was investigated with a lipopolysaccharide (LPS)-stimulated murine macrophages RAW264.7 cells model. The results demonstrated that simonsinol could antagonize the effect of LPS on morphological changes of RAW264.7 cells, and decrease the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 cells, as determined by Griess assay and enzyme-linked immunosorbent assay (ELISA). Furthermore, simonsinol could downregulate transcription of inducible nitric oxide synthase (iNOS), TNF-α, and IL-6 as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibit phosphorylation of the alpha inhibitor of NF-κB (IκBα) as assayed by Western blot. In conclusion, these data demonstrate that simonsinol could inhibit inflammation response in LPS-stimulated RAW264.7 cells through the inactivation of the nuclear transcription factor kappa-B (NF-κB) signaling pathway.


2021 ◽  
Vol 22 (14) ◽  
pp. 7482
Author(s):  
Hwan Lee ◽  
Zhiming Liu ◽  
Chi-Su Yoon ◽  
Linsha Dong ◽  
Wonmin Ko ◽  
...  

Aging is associated with immune disregulation and oxidative stress which lead to inflammation and neurodegenerative diseases. We have tried to identify the anti-neuroinflammatory and anti-inflammatory components of Coreopsis lanceolata L. The dried flowers of C. lanceolata were extracted with 70% EtOH, and the obtained extract was divided into CH2Cl2, EtOAc, n-BuOH, and H2O fractions. The CH2Cl2 fraction was separated using silica gel and C-18 column chromatography to yield phenylheptatriyne (1), 2′-hydroxy-3,4,4′-trimethoxychalcone (2), and 4′,7-dimethoxyflavanone (3). Additionally, the EtOAc fraction was subjected to silica gel, C-18, and Sephadex LH-20 column chromatography to yield 8-methoxybutin (4) and leptosidin (5). All the compounds isolated from C. lanceolata inhibited the production of nitric oxide (NO) in LPS-induced BV2 and RAW264.7 cells. In addition, phenylheptatriyne and 4′,7-dimethoxyflavanone reduced the secretion of inflammatory cytokines, tumor necrosis factor alpha (TNF-α), and interleukin (IL)-6. Among them, phenylheptatriyne was significantly downregulated in the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequently, phenylheptatriyne also effectively inhibited nuclear factor-kappa B (NF-κB) activation in LPS-stimulated BV2 and RAW264.7 cells. Based on these results, the anti-neuroinflammatory effect of phenylheptatriyne isolated from C. lanceolata was confirmed, which may exert a therapeutic effect in treatment of neuroinflammation-related diseases.


Sign in / Sign up

Export Citation Format

Share Document