scholarly journals Плазменное отражение в мультизеренном слое узкозонных полупроводников

Author(s):  
Н.Д. Жуков ◽  
М.И. Шишкин ◽  
А.Г. Роках

AbstractQualitatively similar spectral characteristics of plasma-resonance reflection in the region of 15–25 μm were obtained for layers of electrodeposited submicron particles of InSb, InAs, and GaAs and plates of these semiconductors ground with M1-grade diamond powder. The most narrow-bandgap semiconductor InSb (intrinsic absorption edge ∼7 μm) is characterized by an absorption band at 2.1–2.3 μm, which is interpreted in terms of the model of optical excitation of electrons coupled by the Coulomb interaction. The spectra of a multigrain layer of chemically deposited PbS nanoparticles (50–70 nm) exhibited absorption maxima at 7, 10, and 17 μm, which can be explained by electron transitions obeying the energy-quantization rules for quantum dots.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liang Jie Wong ◽  
Nicholas Rivera ◽  
Chitraang Murdia ◽  
Thomas Christensen ◽  
John D. Joannopoulos ◽  
...  

AbstractFundamental quantum electrodynamical (QED) processes, such as spontaneous emission and electron-photon scattering, encompass phenomena that underlie much of modern science and technology. Conventionally, calculations in QED and other field theories treat incoming particles as single-momentum states, omitting the possibility that coherent superposition states, i.e., shaped wavepackets, can alter fundamental scattering processes. Here, we show that free electron waveshaping can be used to design interferences between two or more pathways in a QED process, enabling precise control over the rate of that process. As an example, we show that free electron waveshaping modifies both spatial and spectral characteristics of bremsstrahlung emission, leading for instance to enhancements in directionality and monochromaticity. The ability to tailor general QED processes opens up additional avenues of control in phenomena ranging from optical excitation (e.g., plasmon and phonon emission) in electron microscopy to free electron lasing in the quantum regime.


2020 ◽  
Vol 86 (1) ◽  
pp. 3-11
Author(s):  
Volodymyr Ogenko ◽  
Svitlana Orysyk ◽  
Ljudmila Kharkova ◽  
Oleg Yanko

Processes of interaction between carbon quantum dots (CQDs) and solutions of rhodium, ruthenium and palladium chlorides in the surface layer have been investigated by electron and IR spectroscopy. When rhodium chloride is added to a solution of CQDS, a bathochromic shift of the β- and p-absorption bands (ABs) at 48725 and 41711 cm-1 as well as hypsochromic shift of the α-AB at 28935 cm-1 indicate that rhodium adsorption occurs on the surface of CQDs. The bathochromic shift of the absorption bands at 22400 сm1 together with the hypsochromic shift of ABs corresponding to d-d electron transitions in the metal ions indicates the formation of rhodium with CQDs. When ruthenium and palladium chlorides are added to an aqueous solution of CQDs, the intensive of ABs characterizing the complex anions [RuCl6]3-, [RuCl6]2- or [PdCl4]2- are absent in the UV-Vis spectra. This indicates the passage of adsorption processes of metals on the surface of CQDs.  The present of ABs (at 27055 and 25125 сm-1) indicate the trivalent state of ruthenium ion; the p-ABs bathochromic shift as well as α-ABs hypsochromic shift indicates the probable complex formation of CQDs with Ru3+ ions. The change in the position of the absorption bands of d-d electron transitions (at 25448 сm1) together with the bathochromic shift of p-ABs and hypsochromic shift of α-ABs indicates a change in coordination environment in the palladium ion with the possible formation of Pd → N bond. The IR-spectra data of CQDs showed the presence of a number of characteristic ABs for functionalized CQDs: ν(N–H) at 3260 сm1, (C=O) at 1830, 1840 and 1850 сm1, –С=O(NH) at 1770 сm1, ν(C=N) at 1680 and δ(N–H) at 1640 сm1, which confirms the coordination of metals on the surface of CQDs.


2017 ◽  
Vol 917 ◽  
pp. 062027
Author(s):  
A V Selivanov ◽  
M Ya Vinnichenko ◽  
I S Makhov ◽  
D A Firsov ◽  
L E Vorobjev ◽  
...  

2014 ◽  
Vol 89 (15) ◽  
Author(s):  
H. J. Park ◽  
C. H. Sohn ◽  
D. W. Jeong ◽  
G. Cao ◽  
K. W. Kim ◽  
...  

2019 ◽  
Vol 64 (4) ◽  
pp. 315
Author(s):  
R. G. Ikramov ◽  
M. A. Nuriddinova ◽  
R. M. Jalalov

Spectral characteristics of the coefficient of defect absorption in amorphous hydrogenated silicon have been studied. The characteristics are determined, by analyzing the electron transitions occurring with the participation of the energy states of dangling bonds. It is shown that the principal role in the formation of the defect absorption coefficient value is played by the electron transitions between defect and non-localized states. It is also shown that the spectral characteristics are mainly determined by the distribution function of the electron density of states in the valence or conduction band. It is found that the maxima in the spectrum of the defect absorption coefficient are observed only if there are pronounced maxima in the density of states at the edges of allowed bands.


2018 ◽  
Vol 10 (12) ◽  
pp. 4599 ◽  
Author(s):  
Jin Jeon ◽  
Joo Hong ◽  
Sung Kim ◽  
Ki-Hyun Kim

The aim of this study was to explore the relationships among the particle number concentration (PNC), noise, and traffic conditions. Field measurements were conducted to measure the temporal variabilities of the noise levels and PNC over 24 h in a location adjacent to three main traffic roads in Seoul, Korea. The PNC was measured in the range of 0.3 to 10 µm. The noise data was measured by utilizing both the overall levels and spectral characteristics. Traffic data including volumes and speeds of vehicles on the roads were also collected. The results showed that the correlations among the three key parameters varied depending on changes in the noise frequency and particle size. The noise levels at 100–200 Hz were positively correlated with traffic volume and submicron particles. In contrast, they exhibited inverse correlations with the traffic speed and the number of larger particles (>2.5 µm). Compared to noise levels at 100–200 Hz, noise levels at 1–2 kHz exhibited reverse relationships between the traffic and PNC. Submicron particles (0.3–1.0 µm) tended to be more strongly associated with noise levels during the daytime, while those greater than 2.5 µm maintained relatively stable correlations with the noise throughout the day. The findings address the importance of temporal and spectral-specific monitoring of air and noise pollutants for a better understanding of the exposure of the community to air and noise pollution.


2021 ◽  
Vol 87 (9) ◽  
pp. 3-13
Author(s):  
Volodymyr Ogenko ◽  
Svitlana Orysyk ◽  
Ljudmila Kharkova ◽  
Oleg Yanko ◽  
Dongchu Chen

Processes of interaction between carbon quantum dots (CQDs) and solutions of Cu(II) Ni(II) and Fe(III) chlorides in the surface layer have been investigated by electron and IR spectroscopy. When hydrochloric acid is added to the aqueous suspension of CQDs, there is a signi­ficant batochromic shift of the average absorption band (AB) by 1285 cm-1 with a decrease in its intensity to ε = 23.39. The presence of copper in the suspension of CQDs at room temperature leads to a decrease in the intensity of this AB (ε = 21.80), which indicates the interaction of CQDs with metal ions. After heating the suspension for 1 and 3 hours, the gypsochromic shift of this ABs (by 335 cm-1) to 27790 cm-1 with a decrease in intensity depending on the heating time was recorded. Such changes in the UV–Vis Spectrum are due to the redistribution of the electron density of electron transitions n → π *due to the coordination of functional groups with metal ions and the appearance of transitions with charge transfer from ligand to metal (CQD→Cu2+). When heating the suspensions significantly increases the absorption intensity of the AB at 22070 cm-1: from ε = 4.59 to ε = 6.75, which indicates the formation of transitions with charge transfer from ligand to metal (ChTLM) due to the coordination of copper ions with CQD. In the absorption spectra of CQD suspensions with NiCl2 before heating, a hypsochromic shift of AB at 27305 cm-1 by 150 cm-1 and an increase in the intensity of its to ε = 4.95 were registered. That is, Ni(II) ions also form coordination bonds with functional groups on the periphery of the CQD. After heating hydrochloric acid suspensions of CQD with FeCl3, in contrast to the chlorides of previous metals, in the UV-region registered shoulder-shaped AB at 31545 cm-1, the intensity of which increases with heating time (from ε = 9.59 to ε = 12.10), and in the visible region, a weakly intense shoulder-shaped AB at 19345 cm-1 (ε = 3.71 and 4.58), associated with the presence of dd-electron transitions in the metal ion. Such changes in the absorption spectra are explained by the fact that iron may interact with CQD in different ways (in addition to coordination with functional donor groups, the formation of coordination bonds with the π-electron system of conjugated CQDs bonds), which leads to additional weak shoulder-like AB at 31545 cm-1. The IR-spectra data of CQDs showed the presence of a number of characteristic ABs for functionalized CQDs: ν(N–H) at 3260 сm1, (C=O) at 1830, 1840 and 1850 сm1, –С=O(NH) at 1770 сm1, ν(C=N) at 1680 and δ(N–H) at 1640 сm1 and 320-360 см-1 СП ν(Cu–Cl, Ni–Cl, Fe–Cl), which confirms the coordination of metals on the surface of CQDs.


Author(s):  
R. H. Duff

A material irradiated with electrons emits x-rays having energies characteristic of the elements present. Chemical combination between elements results in a small shift of the peak energies of these characteristic x-rays because chemical bonds between different elements have different energies. The energy differences of the characteristic x-rays resulting from valence electron transitions can be used to identify the chemical species present and to obtain information about the chemical bond itself. Although these peak-energy shifts have been well known for a number of years, their use for chemical-species identification in small volumes of material was not realized until the development of the electron microprobe.


Author(s):  
C.M. Teng ◽  
T.F. Kelly ◽  
J.P. Zhang ◽  
H.M. Lin ◽  
Y.W. Kim

Spherical submicron particles of materials produced by electrohydrodynamic (EHD) atomization have been used to study a variety of materials processes including nucleation of alternative crystallization phases in iron-nickel and nickel-chromium alloys, amorphous solidification in submicron droplets of pure metals, and quasi-crystal formation in nickel-chromium alloys. Some experiments on pure nickel, nickel oxide single crystals, the nickel/nickel(II) oxide interface, and grain boundaries in nickel monoxide have been performed by STEM. For these latter studies, HREM is the most direct approach to obtain particle crystal structures at the atomic level. Grain boundaries in nickel oxide have also been investigated by HREM. In this paper, we present preliminary results of HREM observations of NiO growth on submicron spheres of pure nickel.Small particles of pure nickel were prepared by EHD atomization. For the study of pure nickel, 0.5 mm diameter pure nickel wire (99.9975%) is sprayed directly in the EHD process. The liquid droplets solidify in free-flight through a vacuum chamber operated at about 10-7 torr.


Sign in / Sign up

Export Citation Format

Share Document