Validation of immunogenic PASD1 peptides against HLA-A*24:02 colorectal cancer

Immunotherapy ◽  
2019 ◽  
Vol 11 (14) ◽  
pp. 1205-1219 ◽  
Author(s):  
Joanne EC Soh ◽  
Nadiah Abu ◽  
Ismail Sagap ◽  
Luqman Mazlan ◽  
Azyani Yahaya ◽  
...  

Colorectal cancer is the third commonest malignancy in Asia including Malaysia. The immunogenic cancer-testis antigens, which are expressed in a variety of cancers but with limited expression in normal tissues except the testis, represent an attractive approach to improve treatment options for colorectal cancer. We aimed to validate four PASD1 peptides as the immunotherapeutic targets in colorectal cancer. First, PASD1 mRNA and protein expression were determined via real-time polymerase chain reaction (RT-PCR) and immunohistochemistry. The PASD1 peptides specific to HLA-A*24:02 were investigated using IFN-y-ELISpot assay, followed by the cytolytic and granzyme-B-ELISpot assays to analyze the cytolytic effects of CD8+ T cells. Gene and protein expressions of PASD1 were detected in 20% and 17.3% of colorectal cancer samples, respectively. PASD1(4) peptide was shown to be immunogenic in colorectal cancer samples. CD8+ T cells raised against PASD1(4) peptide were able to lyze HLA-A*24:02+ PASD1+ cells. Our results reveal that PASD1(4) peptide represents a potential target for colorectal cancer.

2002 ◽  
Vol 17 (4) ◽  
pp. 219-223 ◽  
Author(s):  
S.N. Chi ◽  
N.-K.V. Cheung ◽  
I.Y. Cheung

The SSX genes are members of the family of cancer/testis antigens that encode tumor-associated antigens recognizable by autologous cytolytic T lymphocytes. Their expression is common in tumors of diverse lineages and absent in normal tissues except testis and thyroid. In this study, sixty-seven neuroblastomas (NB) (12 stage 1, 13 stage 2, 12 stage 3, 12 stage 4S and 13 stage 4) were examined by RT-PCR and a sensitive chemiluminescent detection method for SSX-2 and SSX-4 expression. Seventy-two percent (13/18) of stage 4 NB expressed SSX-2 and 67% (12/18) expressed SSX-4. SSX-2 and SSX-4 positivity correlated with metastatic NB stage 4 (p=0.02 and p=0.006, respectively). Sensitivity experiments showed SSX-2 detection was one tumor cell in 106 normal cells, and one in 104 for SSX-4. All normal tissues (n=6), with the exception of testis, normal bone marrow (BM, n=12) and normal peripheral blood (PBL, n=10) were negative for SSX-2 and SSX-4 expression. Thirty-two BM and 14 PBL obtained from 35 stage 4 NB patients at 24 months from their diagnosis were evaluated for SSX-2 expression. Unlike another cancer/testis antigen, GAGE, only one BM sample was positive, and no prognostic utility could be established. Further investigation of SSX expression at other relevant time points is warranted.


Immunotherapy ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1093-1104
Author(s):  
Joanne Ern Chi Soh ◽  
Nadiah Abu ◽  
Rahman Jamal

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Yabin Liu ◽  
Binghui Li ◽  
Lili Wang ◽  
Dexian Kong

Objective. To investigate whether the polymorphisms of interleukin-12B (IL-12B) were associated with the risk of developing colorectal cancer (CRC). Patients and Methods. Genotypes of rs17860508 and rs3212227 were determined by polymerase chain reaction with a direct sequencing method in 329 CRC patients and 342 matched healthy control subjects. The expression of IL-12B mRNA was determined by RT-qPCR in 50 pairs of CRC tissues and their adjacent normal tissues. Results. Compared with TTAGAG/TTAGAG genotype of rs17860508, the GC/GC and TTAGAG/GC genotypes may significantly increase the risk of CRC (OR = 1.81, 95% CI = 1.18–2.78; OR = 1.46, 95% CI = 1.01–2.12, respectively). Furthermore, the mRNA levels of IL-12B were significantly higher in the CRC tissues from patients with the rs17860508 GC/GC genotype than those with the TTAGAG/GC (P=0.009) and TTAGAG/TTAGAG (P=0.001) genotypes. Conclusion. These data suggested that the rs17860508 GC/GC genotype might upregulate IL-12B expression at the transcriptional level and thus increase the risk of CRC.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 71 ◽  
Author(s):  
Varun Sasidharan Nair ◽  
Salman M Toor ◽  
Rowaida Z Taha ◽  
Ayman A Ahmed ◽  
Mohamed A Kurer ◽  
...  

T cell immunoglobulin mucin-3 (TIM-3) is an immune checkpoint identified as one of the key players in regulating T-cell responses. Studies have shown that TIM-3 is upregulated in the tumor microenvironment (TME). However, the precise role of TIM-3 in colorectal cancer (CRC) TME is yet to be elucidated. We performed phenotypic and molecular characterization of TIM-3+ T cells in the TME and circulation of CRC patients by analyzing tumor tissues (TT, TILs), normal tissues (NT, NILs), and peripheral blood mononuclear cells (PBMC). TIM-3 was upregulated on both CD4+ and CD3+CD4− (CD8+) TILs. CD4+TIM-3+ TILs expressed higher levels of T regulatory cell (Tregs)-signature genes, including FoxP3 and Helios, compared with their TIM-3− counterparts. Transcriptomic and ingenuity pathway analyses showed that TIM-3 potentially activates inflammatory and tumor metastatic pathways. Moreover, NF-κB-mediated transcription factors were upregulated in CD4+TIM-3+ TILs, which could favor proliferation/invasion and induce inflammatory and T-cell exhaustion pathways. In addition, we found that CD4+TIM-3+ TILs potentially support tumor invasion and metastasis, compared with conventional CD4+CD25+ Tregs in the CRC TME. However, functional studies are warranted to support these findings. In conclusion, this study discloses some of the functional pathways of TIM-3+ TILs, which could improve their targeting in more specific therapeutic approaches in CRC patients.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A49.1-A49
Author(s):  
MAJ de Rooij ◽  
DM van der Steen ◽  
D Remst ◽  
A Wouters ◽  
M van der Meent ◽  
...  

BackgroundCancer Testis Antigens (CTAs) are highly expressed in multiple different tumor types, but silent in normal tissue, except the testis. This tumor-restricted expression pattern makes them an ideal target for adoptive T-cell therapy. However, the responsiveness in clinical setting may be hampered because high-affinity T cells against self-antigens presented in the context of self-HLA are deleted in the thymus by negative selection. In this study, we aim to identify high-affinity T cell receptors (TCRs) specific for CTAs from the allogeneic-HLA repertoire.Materials and MethodsIn this study, HLA class I binding peptides derived from different CTA genes were identified by HLA-peptide elution experiments and subsequent mass spectrometric analysis. From the identified peptides HLA tetramers were generated to isolate peptide specific CD8+ T cells from healthy allogeneic donors. Efficacy and safety of the TCRs was determined by various different stimulation assays. The most potent TCRs were sequenced, analyzed and transduced into peripheral CD8+ and CD4+ T cells to confirm CTA specific cytokine production and cytotoxicity.ResultsMAGE and CTAG peptides were eluted from multiple myelomas, EBV-transformed lymphoblastic cells, acute myeloid leukemia and ovarium carcinomas. We selected TCRs recognizing 3 different MAGE-A1 peptides in the context of HLA-A*02:01, HLA-A*03:01 and HLA-B*07:02. Furthermore, we selected TCRs specific for MAGE-A3 in the context of HLA-B*35:01 and HLA-A*01:01; TCRs specific for MAGE-A9 in the context of HLA-A*01:01 and TCRs specific for CTAG1 in the context of HLA-A*02:01. The selected T-cell clones demonstrated efficient recognition of MAGE-A1, MAGE-A3 or CTAG1 positive multiple myeloma and solid tumor cell lines without detectable cross-reactivity.ConclusionsWe identified multiple different TCRs from the allogeneic-HLA repertoire specific for CTA genes. These TCRs demonstrate efficient recognition and killing of CTA positive multiple myeloma and solid tumor cell lines and did not show any cross-reactivity. The peptides recognized by the TCRs are presented in different HLA alleles. Since, 71% of the world population contains one of these HLA-alleles, a large percentage suffering from a MAGE or CTAG positive tumor could potentially be treated with the identified TCRs by TCR-gene therapy.Disclosure InformationM.A.J. de Rooij: None. D.M. van der Steen: None. D. Remst: None. A. Wouters: None. M. van der Meent: None. R.S. Hagedoorn: None. M.G.D. Kester: None. P.A. van Veelen: None. F.J.H. Falkenburg: None. M.H.M. Heemskerk: None.


2010 ◽  
Vol 6 (2) ◽  
pp. 113-125 ◽  
Author(s):  
Shiquen Zhang ◽  
Baoman Li ◽  
Ditte Lovatt ◽  
Junnan Xu ◽  
Dan Song ◽  
...  

In well-differentiated primary cultures of mouse astrocytes, which express no serotonin transporter (SERT), the ‘serotonin-specific reuptake inhibitor’ (SSRI) fluoxetine leads acutely to 5-HT2B receptor-mediated, transactivation-dependent phosphorylation of extracellular regulated kinases 1/2 (ERK1/2) with an EC50 of ~5 μM, and chronically to ERK1/2 phosphorylation-dependent upregulation of mRNA and protein expression of calcium-dependent phospholipase A2 (cPLA2) with ten-fold higher affinity. This affinity is high enough that fluoxetine given therapeutically may activate astrocytic 5-HT2B receptors (Li et al., 2008, 2009). We now confirm the expression of 5-HT2B receptors in astrocytes freshly dissociated from mouse brain and isolated by fluorescence-activated cell sorting (FACS) and investigate in cultured cells if the effects of fluoxetine are shared by all five conventional SSRIs with sufficiently high affinity to be relevant for mechanism(s) of action of SSRIs. Phosphorylated and total ERK1/2 and mRNA and protein expression of cPLA2a were determined by Western blot and reverse transcription polymerase chain reaction (RT-PCR). Paroxetine, which differs widely from fluoxetine in affinity for SERT and for another 5-HT2 receptor, the 5-HT2C receptor, acted acutely and chronically like fluoxetine. One micromolar of paroxetine, fluvoxamine or sertraline increased cPLA2a expression during chronic treatment; citalopram had a similar effect at 0.1–0.5 μM; these are therapeutically relevant concentrations.


2021 ◽  
Vol 3 (Supplement_2) ◽  
pp. ii1-ii1
Author(s):  
Thomas Lai ◽  
Janet Treger ◽  
Jingyou Rao ◽  
Tie Li ◽  
Albert Lai ◽  
...  

Abstract Introduction The immunotherapeutic targeting of New York-esophageal squamous cell carcinoma (NY-ESO-1) and other cancer/testis antigens (CTA) is an appealing strategy for the treatment of malignant gliomas because CTA are not expressed in most normal adult tissues and their expression can be induced in tumors for targeting by T-cells. Basally, NY-ESO-1 is often poorly expressed in glioblastoma (GBM), presumably through promoter methylation. Mechanisms governing the expression of CTA have been explored in other cancers; however, neither the prevalence of NY-ESO-1 downregulation in GBM patient tumors nor the presumed mechanism of downregulation by promoter methylation in GBM has been formally established. Methods We characterized baseline CpG methylation of NY-ESO-1 in 30 bulk patient GBM samples, 10 patient-derived gliomaspheres, and three established tumor cell lines using bisulfite sequencing. We induced NY-ESO-1 expression in vitro in U251 human GBM cells using the hypomethylating agent decitabine (DAC). We investigated the epigenetic response of DAC-treated U251 with bisulfite sequencing and NY-ESO-1 expression with quantitative real-time PCR. Lastly, we performed single-cell RNA sequencing on DAC-treated GBM U251 to evaluate tumor subpopulations that upregulate NY-ESO-1 and other co-expressed CTA after DAC treatment. Results Baseline NY-ESO-1 expression is associated with promoter methylation in the majority of GBM. Treatment of cells with 1 µM DAC every day for 4 days explicitly demethylated the promoter region of NY-ESO-1 and resulted in a 1000-fold increase in mRNA expression. DAC treatment upregulates NY-ESO-1 coordinately with other cancer/testis antigens CTAG2 and MAGEA4 as demonstrated by single-cell RNA sequencing. Conclusion Exposure of U251 to DAC results in promoter demethylation in NY-ESO-1 and increased expression of CTA. DAC treatment may therefore render GBM susceptible to targeting of these antigens by T-cells, revealing a feasible strategy of NY-ESO-1 and co-expressed CTA promoter demethylation to sensitize GBM to immunotherapy.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12647
Author(s):  
Huixin Hu ◽  
Songyi Liu ◽  
Aining Chu ◽  
Jing Chen ◽  
Chengzhong Xing ◽  
...  

Objective ERCC4 is one of the most significant molecules of Nucleotide Excision Repair (NER), which has been researched due to its high expression in colorectal cancer (CRC). This study aimed to find out the ceRNA (competitive endogenous RNA) network of ERCC4 in CRC. Methods and Materials Pan cancer mRNA expression of ERCC4 was evaluated using TCGA database. The protein expression of ERCC4 was evaluated based on the Human Protein Atlas (HPA). We screened DElncRNAs and DEmiRNAs in two groups of ERCC4high and ERCC4low expression in CRC. Then a lncRNA-miRNA-ERCC4 regulatory network was constructed based on DElncRNAs and DEmiRNAs using Starbase database and visualized by Cytoscape software. Kaplan-Meier analysis was performed to evaluate the prognostic value of the ceRNA network. Further, RT-PCR was performed to validate the expression of the representative molecules in the ceRNA network in CRC and normal tissues. The relationship between drug sensitivity and these molecules were also evaluated using RNAactDrug database. Results ERCC4 was overexpressed in a variety of tumors at mRNA levels, including CRC. High expression of ERCC4 was also observed on protein level in CRC. A total of 1,885 DElncRNAs and 68 DEmiRNAs were identified from CRC samples in ERCC4high and ERCC4low expression groups. Predicted by the Starbase database, we got interacting miRNAs and lncRNAs of ERCC4 from the DEmiRNAs and DElncRNAs, and a lncRNA-miRNA-ERCC4 regulatory network was constructed. Kaplan-Meier survival curves results showed that miR-200c-3p (hazard ratio [HR] = 0.62, P = 0.032), MALAT1 (HR = 1.54, P = 0.016), and AC005520.2 (hazard ratio [HR] = 1.75, P = 0.002) were significantly associated with the prognosis of CRC. After validation by RT-PCR, we found that ERCC4 and MALAT1 were up-regulated in CRC compared with normal tissues, while miR-200c-3p was down-regulated. A strong negative correlation was observed between MALAT1 and miR-200c-3p. Drug sensitivity analysis showed that ERCC4, miR-200c and MALAT1 were all associated with Cisplatin. Conclusion We constructed a ceRNA network of ERCC4 in CRC, of which the MALAT1-miR-200c-3p-ERCC4 axis may be involved in the development, prognosis and chemotherapy sensitivity of CRC. These findings might provide novel clues and insights on the molecular mechanisms of ERCC4 and NER pathway in CRC.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14233-e14233
Author(s):  
Kristina I. Soldatova ◽  
Oleg Ivanovich Kit ◽  
Roman E. Tolmakh ◽  
Denis S. Kutilin

e14233 Background: Cancer-testis antigens (CTA) can be used in immunotherapy and for early detection of cancer. Despite numerous studies of the CTA expression in different tumors, their transcriptional activity and its regulation in colorectal cancer (CRC) remain poorly understood. The purpose of the study was to analyze the expression of cancer-testis genes (CT-genes) and mechanisms of its regulation in CRC. Methods: Tumor and intact tissues of the colon were studied in 60 patients. RNAs were isolated using the method described by Chomczynski and Sacchi (2006). The REVERTA-L reagent kit was used for the cDNA synthesis. Expression of 16 CT-genes (MAGE-A1, -A2, -A3, -A4, MAGE-B1, -B2, GAGE-1, -3, -4, MAGEC1, BAGE, XAGE3, NYESO1, SSX2, SCP1, PRAME1) and expression and copy number of 3 DNA methyltransferase genes (DNMT1, DNMT3A, DNMT3B) were determined by Real-Time qPCR (GAPDH and GUSB - reference genes). For the cluster analysis, we used our R scripts. Differences were assessed by the Mann-Whitney test, and correlations – by the Spearman's rank correlation coefficient (r). Results: The expression of 2 CT genes, SSX2 and PRAME1, was increased (p < 0.05) by 1.8 and 2.9 times, respectively, and the BAGE expression was decreased by 2.4 times in tumor tissues, compared to the normal tissues. The expression and copy number of DNMT3A in tumor tissues was 1.5 and 2 times higher (p < 0.05), and that of DNMT3B – 2 times lower (p < 0.005), compared to normal tissues. The copy number and expression of the DNMT1 gene did not change. A strong positive correlation (r = 0.996) between the expression and copy number of DNA methyltransferase genes was observed. Using cluster analysis (Hierarchical Clustering, Euclidean distance), we detected two clusters of CRC samples different in the expression of CT-genes and methyltransferases. Cluster 1 showed increased expression of DNMT1, DNMT3A and DNMT3B and decreased expression of BAGE, SSX2 and PRAME1; cluster 2 – decreased expression of DNMT1, DNMT3A and DNMT3B and increased expression of BAGE, SSX2 and PRAME1. Conclusions: The detected aberrant expression of the CT-genes BAGE, SSX2, PRAME1 in CRC depends on the expression of DNMT1, DNMT3A, DNMT3B, which in its turn depends on the copy number of the corresponding DNA methyltransferase genes.


Sign in / Sign up

Export Citation Format

Share Document