scholarly journals Removal of Heavy Metal from Wastewater using Water Chestnut Shell as an Adsorbent

Author(s):  
Girish R. Jangle

The contamination of water resources as a result of industrial activity is on the rise and is a global concern. The heavy metals found in wastewater are long lasting and non-biodegradable. Contamination with heavy metals over acceptable limits could result in major health problems. Chemical precipitation, chemical oxidation, ion exchange, membrane separation, reverse osmosis, electrodialysis, adsorption, and other technologies are used to lessen the influence of heavy metals on water bodies. Some procedures are extremely costly, energy-intensive, and frequently result in the production of harmful by-products. The use of adsorption as a cost-effective approach for removing heavy metals from industrial wastewater has been examined. The usage of Trapa bispinosa peels/shell as a low-cost adsorbent for wastewater treatment is discussed in this paper. Chemical activation was used to make activated carbons from Trapa bispinosa peels and shells. Activated carbons made from a combination of Trapa bispinosa peels/shells and Phosphoric acid with varying impregnation ratios. The results revealed that the activating temperature for the production of Trapa bispinosa-derived activated carbon is 500℃ (AC). CHNS, X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy were used to analyze the activated carbons.

2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Lakshmi Prasanna Koduru

Heavy metals are one of the primary contaminants in the environment [1]. Exposure to heavy metals, even at trace levels, is believed to be a high health risk for humans [2,3]. Heavy metals are naturally occurring throughout the earth’s crust [4]. But most of the environmental contamination results from the anthropogenic activities such as mining and smelting operations, industry, and domestic and agricultural use of metals and metalcontaining compounds. Migration of these contaminants into non-contaminated areas as dust or leachates through the soil and spreading of heavy metals containing sewage sludge are a few examples of events contributing towards contamination of the ecosystems [5]. Hence, water is the one of the major routes through which heavy metals and radionuclides may enter the human body [6,7]. The sources of water pollution are shown in Figure 1. The conventional wastewater purification techniques including chemical coagulation, photo degradation, precipitation, flocculation, activated sludge, membrane separation and ion exchange are limited to the removal of heavy metals at trace levels [7-9]. However, adsorption is one of the best methods for the purification of water, owing to its low cost and easy handling of materials [7,10-12]. Moreover, adsorption approaches using commercial activated carbon, micro-filtration and membrane techniques are effective, but their use is limited by the complicated installation process involved coupled with the high maintenance costs of the systems [7,13]. Hence, these drawbacks have necessitated the search for an alternative method which is inexpensive, renewable and cost-effective for the removal of heavy metals from aqueous solutions. Many scientific groups have prepared graphene or graphene oxide (GO) based hybrid nanocomposites for various potential applications [14-17]. The study of literature survey and stability of the GO-based nanocomposites prompted us to survey on graphene oxide and reduced graphene oxide-based inverse spinel nickel ferrite nanocomposites for the removal of heavy metals and radionuclides from water with the purpose of reducing their environmental impact


2019 ◽  
Vol 3 (3) ◽  
pp. 131 ◽  
Author(s):  
Denise Domingos dos santos Martins ◽  
Juan Carlos Valdés Serra ◽  
Joel Carlos Zukowski Junior ◽  
Marcelo Mendes Pedroza

Toxic metals are naturally present in the environment even if there is no anthropic action. Several methods are used for the removal of these metals from water and effluents, such as: chemical precipitation, oxidation/reduction, filtration, ion exchange, membrane separation, and adsorption. Biosorption stands out as an effective treatment because it has a high rate of renewal in nature, low production costs, and high removal of metals due to the possibility of recovery of the contaminant, either by incinerating the biomass or by desorbing it. Thus, this study identified some biochars used as adsorbents for the removal of  copper, lead, chromium, and mercury in water. It can be concluded from this study that adsorption is a very efficient technique for removing or recovering heavy metals from the environment. These biocarbons are alternatives that can replace commercial activated carbon because, besides having a low production cost, they have been shown to efficiently remove metal ions, ensuring an effective treatment in compliance with effluent release standards.


2019 ◽  
Vol 8 (4) ◽  
pp. 1495-1498

Heavy metals become a serious problem to society in the view of water pollution. Polluted water causes many disorders in human beings, animals and plants also. The concentration of heavy metals increases mainly due to the activities like mining, agricultural activities and disposal of industrial waste products. Most of the activities releases heavy metals like Mercury (Hg), chromium(Cr), arsenic(Ar), thallium (Tl), nickel (Ni), lead (Pb), and cadmium (Cd). Separation of these heavy metals from water many treatment methods are available like chemical precipitation, ion exchange, membrane separation, electrodialysis, ultra-filtration, nano filtration, coagulation, flocculation, floatation and adsorption. Adsorption is the best method out of all these methods. Activate carbon is normally used as adsorbent but it is expensive. Black babul wood is the cheapest and abundant available in nature. So treatment of heavy metals black babul wood used as adsorbent. In this article, effect of parameters like process time, initial concentration, adsorbent dosage, adsorbent particle and temperature on separation of Chromium from aqueous solution is studied.


2021 ◽  
Vol 13 (15) ◽  
pp. 8421
Author(s):  
Yuan Gao ◽  
Jiandong Huang ◽  
Meng Li ◽  
Zhongran Dai ◽  
Rongli Jiang ◽  
...  

Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.


2021 ◽  
Vol 4 (4) ◽  
pp. 377-385
Author(s):  
Volodymyr M. Lucenko ◽  
Dmytro O. Progonov

Reliable protection of confidential data processed in critical information infrastructure elements of public institutions and private organizations is topical task today. Of particular interest are methods to prevent the leakage of confidential data by localizing informative (dangerous) signals that both carry an informative component, and have a signal level higher than predefined threshold. The increase in signal energy from personal computers is caused by increasing of its transistors switching speed. Modern passive shielding methods for secured computers, similar to the well-known program TEMPEST, require either costly and large shielding units or technological simplification by using of low-cost fragmentary shielding of computer’s individual elements. Therefore, localization of side electromagnetic radiation produced by personal computer is needed. The paper presents a cost-effective approach to reducing the level of computer’s electromagnetic radiation by passive method. The radiation are localized and measured by its estimation on personal computer’s elements, namely unshielded communication lines between video processor and a monitor, fragments of electric tracks on motherboards, etc. During experiments authors used ad-hoc miniature electric (ball antenna) and magnetic (Hall sensor) antennas connected to selective voltmeters. This approach significantly reduces the cost of equipment and measurements as well as requirements to analytics’ qualification for improving computer’s protection. Also, the alternative approach for computer protection is proposed. The approach is based on image content protection by distorting the image on the monitor instead of reducing electromagnetic radiation caused by signals from the monitor. The protection includes image scrambling using Arnold transform that randomly “shuffle” the lines in each frame.


2008 ◽  
Vol 1129 ◽  
Author(s):  
Shannon Patrick Farrell ◽  
Patti E. Quigley ◽  
Kyle J. Avery ◽  
Tim D. Hatchard ◽  
Stephanie E Flynn ◽  
...  

AbstractRecently, low-cost processing approaches that produce textured thin bodies have engendered interest as cost-effective approaches for fabrication of magnetostrictive Fe-Ga alloys. In particular, wire-forming methods that strictly control the solidification direction could lead to some measure of crystallographic texture control. This is critical for development of large magnetostriction in polycrystals and for use of the alloys in actuators, sensors, energy harvesters and other systems. Magnetostrictive Fe-Ga wires have been prepared using an innovative cost-effective approach – based on the Taylor wire method – that combines rapid solidification and deformation processes. The procedure for making magnetostrictive wires is discussed and the wires are evaluated in terms of microstructure, crystallographic texture and magnetostriction. Results show that the Taylor-based approach is an effective and versatile means to draw 1-3 mm diameter textured Fe-Ga wire. Experimentation on the influence of drawing technique and quench conditions on texture development resulted with production of a strong <100> fiber texture in the Fe-Ga wire. Magnetostriction measurements, in the absence of prestress, indicated a maximum magnetostriction of ˜165 ppm in a saturation field of less than 200 mTesla. This is considered a significant strain for bulk polycrystalline Fe-Ga alloys without a pre-stress or a stress-annealing treatment. The unique properties of wires made with the Taylor-based approach coupled with the low intrinsic cost make this an attractive approach for production of textured magnetostrictive wire for a variety of applications.


Author(s):  
Jianghong Liu ◽  
Jian Xue ◽  
Dandan Yuan ◽  
Xiaohang Wei ◽  
Huimin Su

Heavy metal pollution has pervaded many parts of the world, especially developing countries such as China. The discharge of wastewater containing heavy metals will cause soil pollution for a long time and harm to human health. Soil washing is an environmentally feasible and cost-effective approach for the clean-up of sites contaminated with heavy metals. As a relatively environmental protection agent, surfactants are widely used in soil washing. This paper generalized the methods of remediation of soil from heavy metals, expounded the mechanisms of soil washing by surfactant and the types of surfactants and summarized the application of different surfactants in washing heavy metals from soil. Finally, the application prospects and development trends of surfactant washing heavy metals from soil have been prospected.


2000 ◽  
Vol 18 (4) ◽  
pp. 373-383 ◽  
Author(s):  
Laila B. Khalil ◽  
Badie S. Girgis ◽  
Tarek A.M. Tawfik

Locally discarded olive oil waste was tested as a potential raw material for the preparation of activated carbons. Chemical activation by impregnation with H3PO4 was employed using acid solutions of varying concentration in the range 30–70% followed by thermal treatment at 500–700°C. The development of porosity was followed from an analysis of the nitrogen adsorption isotherms obtained at 77 K by applying standard BET and t-plot methods. Carbons with low to moderate surface areas (273–827 m2/g) and total pore volumes (0.27–0.69 ml/g), containing essentially micropores with diameters of 8.2 Å up to 12.4 Å were obtained. Increasing the concentration of impregnant led to the development of porosity with the optimum being attained at 60% H3PO4. Phosphoric acid is visualized as acting both as an acid catalyst promoting bond-cleavage reactions and the formation of new crosslinks and also as a reactant which combines with organic species to form phosphate and polyphosphate bridges which connect and crosslink biopolymer fragments. The present study suggests many applications for environmental pollution control, firstly by utilizing accumulating low-cost agricultural by-products and secondly by producing a multi-purpose high-capacity adsorbent useful in the remediation of micropollutants in various water courses.


2020 ◽  
Vol 17 (9) ◽  
pp. 4666-4670
Author(s):  
Himanshu Sekhar Rath ◽  
Mira Das ◽  
Smita Rath ◽  
U. N. Dash ◽  
Alakananda Tripathy

The goal of this research is to determine the current standard of water quality along the Brahmani River stretch in terms of physico-chemical parameters. The River Brahmani receives a substantial amount of industrial waste in the identified study area and is witness to a large amount of human and agricultural activities. Nowadays Ninety percent of Brahmani’s required water is secured with groundwater resources and it is essential to forecast pollutant content in those resources. Hence, this research aimed at using of nanoparticles such as Activated Carbons (ACs) for removal of heavy metal such as nickel and zinc in Brahmani river using the Langmuir approach. Adsorption seems to be the most widely used method for heavy metal recovery due to its low cost, easy installation and the presence of alternative adsorbents. In addition, the process of adsorption can also be made in use to recover heavy metal ions from wastewater. Despite these advantages, adsorption is hard to commercialize. Due to the strong absorption capacity, high number of pores and wide, common area, nanoparticles are treated as the effective method in removal of heavy metals in rivers. Comparative analysis shows that seventy-one percent of heavy metals can be removed using the nanotechnology model.


Sign in / Sign up

Export Citation Format

Share Document