scholarly journals Some contributions from Neurosciences to Education: do enriched environments increase the learning capacity of our brain?

2021 ◽  
Vol 3 (2) ◽  
pp. 25-39
Author(s):  
Luís Calafate ◽  
◽  
Sara Calafate ◽  

The reflection and discussion on the role of genetic specification and experience in the acquisition of a function and in the development of an individual reflects a fascinating and very current debate among those working in the area of behavior and development. Concerning the development of human behavior and the influence of biological heritage and the envitonment, conflicting and sometimes exclusive positions were established. On the one hand, adherents of genetic inheritance exclude the possibility of the influence of the environment. On the other hand, supporters of the environment exclude genetic inheritance. There is also an eclectic position, reconciling both extremes. Furthermore, within the scope of the trends themselves, differentiating nuances emerge. It is therefore, a very controversial subject to which we dedicate this work from a Neuroscience perspective. We will approach brain neuroplasticity as the ability of the nervous system to change and adapt, in response to internal and external stimuli, including structural and / or functional changes throughout life. Brain plasticity is one of the pillars of learning and memory processes. In short, the role of Neurosciences in the field of Educational Sciences is taking shape and the concept of neuroplasticity is a sine qua non condition for trying to establish a connection between education, behavior and the brain.

PEDIATRICS ◽  
1951 ◽  
Vol 7 (2) ◽  
pp. 269-293
Author(s):  
CHARLES C. CHAPPLE

A study has been made of the known phenomena which affect the biologic organism. Certain correlations have been found and other correlations are logically inferred. The common grounds of anatomic structures, the anatomic responses to endocrine stimuli, the interrelationships and interdependencies of the endocrines and external stimuli have been followed and have been related to cellular permeability and hyaluronic acid. Cellular phases, including the rhythmic alternations in physiologic functions, have been delineated and their importance stressed. Further, the probability is advanced that this rhythmicity originates physiologically in the brain but that the brain itself is capable of receiving transmissions from within and without the body, and disseminating them, again rhythmically, in normal or altered amplitude and frequency. Further experimental evidence of these correlations and their practical extrapolations into drug actions and the therapy of infections and metabolic disease will be reported and will include clinical, animal and in vitro studies. At present, the following conclusions seem justified: 1. No component of the body is capable of independent action. 2. Action in any component is reflected, according to its magnitude and directness of application, upon all the body. 3. All such actions are mediated by the brain. 4. There is a dynamic, rhythmic cyclicity in physiologic action which can be altered in amplitude and frequency. 5. These rhythms are alternations of cellular tenseness and relaxation. 6. The concomitants of the tense phase are compactness, impermeability, electric conductivity and contraction of all cells, and these characteristics might be described collectively as the factors operative in maturing the cell. The concomitants of the relaxed phase are laxness, permeability, electric resistance and expansion of all cells and are factors of growth. 7. The phase of tenseness is accompanied by an increase in certain hormonal activities and that of relaxation by an increase in others. 8. The hormones may be causes of the phase or the results of it. 9. Infectious disease cannot act as an extraneous agent capable of bringing its own engine into such a highly integrated mechanism but must act on the body through its ability to affect one of the body's mechanisms. 10. Drugs must act through the same channels available to disease. 11. Foods may contain, in addition to their caloric content, components capable of stimulating either the phase of cellular expansion or cellular compaction, particularly foods from the reproductive systems of plants or animals (milk, eggs, cereal, for example). 12. Vitamins each stimulate one phase and should be evaluated in terms of positive actions. 13. Inherent growth and maturation factors are not of fixed capacity in an individual but beyond certain limits must be supplied him or applied to him constantly. 14. The hormone most manifest in the tense phase is estrogen and so may be considered the maturation factor, and the one most manifest in the phase of relaxation or cell division is progesterone, which may be considered the growth factor.


2003 ◽  
Vol 12 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Bryan Kolb ◽  
Robbin Gibb ◽  
Terry E. Robinson

Although the brain was once seen as a rather static organ, it is now clear that the organization of brain circuitry is constantly changing as a function of experience. These changes are referred to as brain plasticity, and they are associated with functional changes that include phenomena such as memory, addiction, and recovery of function. Recent research has shown that brain plasticity and behavior can be influenced by a myriad of factors, including both pre- and postnatal experience, drugs, hormones, maturation, aging, diet, disease, and stress. Understanding how these factors influence brain organization and function is important not only for understanding both normal and abnormal behavior, but also for designing treatments for behavioral and psychological disorders ranging from addiction to stroke.


2019 ◽  
Author(s):  
David Baidoe-Ansah ◽  
M Sadman Sakib ◽  
Shaobo Jia ◽  
Andre Fischer ◽  
Rahul Kaushik ◽  
...  

AbstractNeural extracellular matrix (ECM) is a complex molecular meshwork surrounding neurons and glial cells in the extracellular space. Structural and functional state of ECM in the brain is tightly regulated by various components of neural ECM such as hyaluronic acid, chondroitin sulfate proteoglycans, link proteins, tenascins, various matrix-modifying enzymes such as chondroitin sulfate synthases and carbohydrate sulfotransferase together with matrix-degrading enzymes. Age-dependent accumulation of ECM molecules is implicated in the age-associated decline in synaptic and cognitive functions. Understanding age-associated changes in the expression of genes involved in regulating various components of ECM can provide an insight into the role of ECM in the aging brain. Hence, in this study, we compared the expression levels of ECM regulating genes in three groups of mice: 2-3 months old mice (2-3M), 22- to 26-month-old mice (22-26M) and more than 30-month-old mice (>30M). Using qPCR, we discovered that in the hippocampus of >30M old mice, the majority of ECM related genes are downregulated, while genes related to neuroinflammation are highly upregulated. This pattern was accompanied by a decrease in cognitive performance of the >30M old mice and was most correlated among ECM-related genes with the downregulation of carbohydrate sulfotransferase 3 (CHST3) gene expression. Interestingly, in 24-26M mice, no general decrease in the expression of ECM related genes was observed, although we still found the upregulation in neuroinflammatory genes and downregulation of CHST3. Further analysis of epigenetic mechanisms revealed a decrease in H3K4me3, three methyl groups at the lysine 4 on the histone H3 proteins, associated with the promoter region of CHST3 gene in non-neuronal (NeuN-negative) but not in neuronal (NeuN-positive) cells. We conclude that in 22-26 M old brains there are minor changes in expression of the studied bona fide neural ECM genes but there is a prominent epigenetic dysregulation of the CHST3 gene responsible for 6-sulfation of chondroitin sulfates, which may lead to impaired brain plasticity and cognitive decline.


2013 ◽  
Vol 65 (1) ◽  
pp. 255-264
Author(s):  
Natasa Loncarevic-Vasiljkovic ◽  
Vesna Pesic ◽  
N. Tanic ◽  
Desanka Milanovic ◽  
Aleksandra Mladenovic-Djordjevic ◽  
...  

The recovery period following cortical injury (CI) is characterized by a dynamic and highly complex interplay between beneficial and detrimental events. The aim of this study was to examine the expressions of Glial Fibrillary Acidic Protein (GFAP), Apolipoprotein E (ApoE) and Amyloid Precursor Protein (APP), all of which are involved in brain plasticity and neurodegeneration. Our results reveal that CI strongly influenced GFAP, ApoE and APP mRNA expression, as well as GFAP and ApoE protein expression. Considering the pivotal role of these proteins in the brain, the obtained results point to their potential contribution in neurodegeneration and consequent Alzheimer?s disease development.


2018 ◽  
Author(s):  
Nélia Varela ◽  
Miguel Gaspar ◽  
Sophie Dias ◽  
Maria Luísa Vasconcelos

ABSTRACTIn flies, the olfactory information is carried from the first relay in the brain, the antennal lobe, to the mushroom body (MB) and the lateral horn (LH). Olfactory associations are formed in the MB. The LH was ascribed a role in innate responses based on the stereotyped connectivity with the antennal lobe, stereotyped physiological responses to odors and MB silencing experiments. Direct evidence for the functional role of the LH is still missing. Here we investigate the behavioral role of the LH neurons directly, using the CO2 response as a paradigm. Our results show the involvement of the LH in innate responses. Specifically, we demonstrate that activity in two sets of neurons is required for the full behavioral response to CO2. Using calcium imaging we observe that the two sets of neurons respond to CO2 in different manners. Using independent manipulation and recording of the two sets of neurons we find that the one that projects to the SIP also outputs to the local neurons within the LH. The design of simultaneous output at the LH and the SIP, an output of the MB, allows for coordination between innate and learned responses.


Author(s):  
Sophie Di Francesco-Mayot

CESAA 17TH ANNUAL EUROPE ESSAY COMPETITION 2009 - Honours winner: Sophie Di Francesco-Mayot, Monash UniversityOver the past decades, the European Union has witnessed an increasing apathy among European citizens’ vis-à-vis EU institutions. In 1993, EU elites formally introduced the idea of a ‘European citizenship’ in an attempt on the one hand, to reactivate the European integration project, and, on the other hand, to foster greater consciousness of the European identity which the EU is supposed to represent. What opportunities and challenges would Turkey’s accession to EU membership have on our idea of ‘European citizenship’ and ‘identity’? An analysis on the current debate regarding Turkey’s possible accession in the EU raises significant questions on the EU’s identity and on the role of the EU in the international community.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1542
Author(s):  
Grazia Maugeri ◽  
Velia D’Agata ◽  
Benedetta Magrì ◽  
Federico Roggio ◽  
Alessandro Castorina ◽  
...  

The multifold benefits of regular physical exercise have been largely demonstrated in human and animal models. Several studies have reported the beneficial effects of physical activity, both in peripheral tissues and in the central nervous system (CNS). Regular exercise improves cognition, brain plasticity, neurogenesis and reduces the symptoms of neurodegenerative diseases, making timeless the principle of “mens sana in corpore sano” (i.e., a healthy mind in a healthy body). Physical exercise promotes morphological and functional changes in the brain, acting not only in neurons but also in astrocytes, which represent the most numerous glial cells in the brain. The multiple effects of exercise on astrocytes comprise the increased number of new astrocytes, the maintenance of basal levels of catecholamine, the increase in glutamate uptake, the major release of trophic factors and better astrocytic coverage of cerebral blood vessels. The purpose of this review is to highlight the effects of exercise on brain function, emphasize the role of astrocytes in the healthy CNS, and provide an update for a better understanding of the effects of physical exercise in the modulation of astrocyte function.


2018 ◽  
Vol 24 (14) ◽  
pp. 1563-1588 ◽  
Author(s):  
Livia Carrascal ◽  
Pedro Nunez-Abades ◽  
Antonio Ayala ◽  
Mercedes Cano

Melatonin is an indolamine synthesized and secreted by the pineal gland along with other extrapineal sources including immune system cells, the brain, skin and the gastrointestinal tract. Growing interest in this compound as a potential therapeutic agent in several diseases stems from its pleiotropic effects. Thus, melatonin plays a key role in various physiological activities that include regulation of circadian rhythms, immune responses, the oxidative process, apoptosis or mitochondrial homeostasis. Most of these processes are altered during inflammatory pathologies, among which neurodegenerative and bowel diseases stand out. Therapeutic assays with melatonin indicate that it has a beneficial therapeutic value in the treatment of several inflammatory diseases, such as Alzheimer, Amiotrophic Lateral, Multiple Sclerosis and Huntigton´s disease as well as ulcerative colitis. However, contradictory effects have been demonstrated in Parkinson´s and Chron´s diseases, which, in some cases, the reported effects were beneficial while in others the pathology was exacerbated. These various results may be related to several factors. In the first place, it should be taken into account that at the beginning of the inflammation phase there is a production of reactive oxygen species (ROS) that should not be blocked by exclusively antioxidant molecules, since, on the one hand, it would be interfering with the action of neutrophils and macrophages and, on the other, with the apoptotic signals activated by ROS. It is also important to keep in mind that the end result of an anti-inflammatory molecule will depend on the degree of inflammation or whether or not it has been resolved and has therefore become chronic. In this review we present the use of melatonin in the control of inflammation underlying the above mentioned diseases. These actions are mediated through their receptors but also with their direct antioxidant action and melatonin's ability to break the vicious cycle of ROSinflammation. This review is aimed at evaluating the effect of melatonin on activity of the inflammatory process and at its immunomodulator effects.


2009 ◽  
Vol 68 (4) ◽  
pp. 408-415 ◽  
Author(s):  
M. J. Dauncey

Nutrition can affect the brain throughout the life cycle, with profound implications for mental health and degenerative disease. Many aspects of nutrition, from entire diets to specific nutrients, affect brain structure and function. The present short review focuses on recent insights into the role of nutrition in cognition and mental health and is divided into four main sections. First, the importance of nutritional balance and nutrient interactions to brain health are considered by reference to the Mediterranean diet, energy balance, fatty acids and trace elements. Many factors modulate the effects of nutrition on brain health and inconsistencies between studies can be explained in part by differences in early environment and genetic variability. Thus, these two factors are considered in the second and third parts of the present review. Finally, recent findings on mechanisms underlying the actions of nutrition on the brain are considered. These mechanisms involve changes in neurotrophic factors, neural pathways and brain plasticity. Advances in understanding the critical role of nutrition in brain health will help to fulfil the potential of nutrition to optimise brain function, prevent dysfunction and treat disease.


Author(s):  
Tamar Makin ◽  
London Plasticity Lab

Phantom sensations are experienced by almost every person who has lost their hand in adulthood. This mysterious phenomenon spans the full range of bodily sensations, including the sense of touch, temperature, movement, and even the sense of wetness. For a majority of upper-limb amputees, these sensations will also be at times unpleasant, painful, and for some even excruciating to the point of debilitating, causing a serious clinical problem, termed phantom limb pain (PLP). Considering the sensory organs (the receptors in the skin, muscle or tendon) are physically missing, in order to understand the origins of phantom sensations and pain the potential causes must be studied at the level of the nervous system, and the brain in particular. This raises the question of what happens to a fully developed part of the brain that becomes functionally redundant (e.g. the sensorimotor hand area after arm amputation). Relatedly, what happens to the brain representation of a body part that becomes overused (e.g. the intact hand, on which most amputees heavily rely for completing daily tasks)? Classical studies in animals show that the brain territory in primary somatosensory cortex (S1) that was “freed up” due to input loss (hereafter deprivation) becomes activated by other body part representations, those neighboring the deprived cortex. If neural resources in the deprived hand area get redistributed to facilitate the representation of other body parts following amputation, how does this process relate to persistent phantom sensation arising from the amputated hand? Subsequent work in humans, mostly with noninvasive neuroimaging and brain stimulation techniques, have expanded on the initial observations of cortical remapping in two important ways. First, research with humans allows us to study the perceptual consequence of remapping, particularly with regards to phantom sensations and pain. Second, by considering the various compensatory strategies amputees adopt in order to account for their disability, including overuse of their intact hand and learning to use an artificial limb, use-dependent plasticity can also be studied in amputees, as well as its relationship to deprivation-triggered plasticity. Both of these topics are of great clinical value, as these could inform clinicians how to treat PLP, and how to facilitate rehabilitation and prosthesis usage in particular. Moreover, research in humans provides new insight into the role of remapping and persistent representation in facilitating (or hindering) the realization of emerging technologies for artificial limb devices, with special emphasis on the role of embodiment. Together, this research affords a more comprehensive outlook at the functional consequences of cortical remapping in amputees’ primary sensorimotor cortex.


Sign in / Sign up

Export Citation Format

Share Document