scholarly journals A 79 dBΩ 1.2 GHz Low-Noise Single-Ended CMOS Transimpedance Amplifier for High-Performance OTDR Applications

2019 ◽  
Vol 15 (2) ◽  
pp. 113-118
Author(s):  
Agata Romanova ◽  
Vaidotas Barzdenas

AbstractThe work reports on the design and performance of a low-noise low-cost CMOS transimpedance amplifier (TIA). The proposed circuit shall be employed in optical time-domain reflectometers and is implemented using an affordable 0.18 µm 1.8 V CMOS process. The approach preserves the benefits of a classical feedback structure while addressing the noise problem of conventional feed-forward and resistive feedback architectures via the usage of noise-efficient capacitive feedback. Circuit-level modifications are proposed to mitigate the voltage headroom and DC current issues. The suggested design achieves a total gain of 82 dBΩ (79 dBΩ after the output buffer) within the bandwidth of 1.2 GHz while operating with a total input capacitance of 0.7 pF. The simulated average input-referred noise current density is below 1.8 pA/sqrt(Hz) with the power consumption of the complete amplifier including the output buffer being 21 mW.

2021 ◽  
Vol 72 (3) ◽  
pp. 147-157
Author(s):  
Agata Romanova ◽  
Vaidotas Barzdenas

Abstract The work reports on the design of an area-efficient inductor-less low-noise CMOS transimpedance amplifier suitable for entry-level optical time-domain reflectometers. The work suggests a novel approach for implementing a programmable-gain in capacitive feedback TIA with an independent adjustment of the low- and high-frequency behavior using the input stage biasing impedance and one of the feedback capacitors. The approach addresses a typical noise problem of fast feed-forward or resistive feedback topologies while alleviating the trade-off of the key TIA performance indicators. A more accurate amplifier model is proposed which takes into account the effects due to capacitive isolation and both biasing circuits. Further modifications to the reference design are suggested including the PMOS-based implementation of the biasing circuit to address the voltage headroom issue. The circuit was implemented using a standard 180 nm CMOS process and operates from 1.8 V supply with the drawn current of 11.7 mA.


1984 ◽  
Vol 5 (3) ◽  
Author(s):  
L. P. de Jong ◽  
E. H. Nordholt

SummaryA low-cost video baseband transmission system using analog light-intensity modulation with an 850 nm LED compensated for nonlinearity is presented. A very low- noise current amplifier at the input of the receiver and a high-dynamic range automatic gain control provide a transmission system that can accomodate more than a 20 dB difference in optical losses without any adjustment. At the receiver input, a 100 nW (- 40 dBm) optical signal is required for surveillance transmission quality. The transmitter delivers an optical signal power of - 18 dBm to a 50 pm graded-index fiber. The differential gain and phase of the system lie below 2% and 1°, respectively.


2012 ◽  
Vol 81 ◽  
pp. 65-74 ◽  
Author(s):  
Jacopo Iannacci ◽  
Giuseppe Resta ◽  
Paola Farinelli ◽  
Roberto Sorrentino

MEMS (MicroElectroMechanical-Systems) technology applied to the field of Radio Frequency systems (i.e. RF-MEMS) has emerged in the last 10-15 years as a valuable and viable solution to manufacture low-cost and very high-performance passive components, like variable capacitors, inductors and micro-relays, as well as complex networks, like tunable filters, reconfigurable impedance matching networks and phase shifters, and so on. The availability of such components and their integration within RF systems (e.g. radio transceivers, radars, satellites, etc.) enables boosting the characteristics and performance of telecommunication systems, addressing for instance a significant increase of their reconfigurability. The benefits resulting from the employment of RF-MEMS technology are paramount, being some of them the reduction of hardware redundancy and power consumption, along with the operability of the same RF system according to multiple standards. After framing more in detail the whole context of RF MEMS technology, this paper will provide a brief introduction on a typical RF-MEMS technology platform. Subsequently, some relevant examples of lumped RF MEMS passive elements and complex reconfigurable networks will be reported along with their measured RF performance and characteristics.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 1-20
Author(s):  
Geun Sik Kim ◽  
Kai Liu ◽  
Flynn Carson ◽  
Seung Wook Yoon ◽  
Meenakshi Padmanathan

IPD technology was originally developed as a way to replace bulky discrete passive components, but it¡¯s now gaining popularity in ESD/EMI protection applications, as well as in RF, high-brightness LED silicon sub-mounts, and digital and mixed-signal devices. Already well known as a key enabler of system-in-packages (SiPs), IPDs enable the assembly of increasingly complete and autonomous systems with the integration of diverse electronic functions such as sensors, RF transceivers, MEMS, power amplifiers, power management units, and digital processors. The application area for IPD will continue to evolve, especially as new packaging technology, such as flipchip, 3D stacking, wafer level packaging become available to provide vertical interconnections within the IPD. New applications like silicon interposers will become increasingly significant to the market. Currently the IPD market is being driven primarily by RF or wireless packages and applications including, but not limited to, cell phones, WiFi, GPS, WiMAX, and WiBro. In particular, applications and products in the emerging RF CMOS market that require a low cost, smaller size, and high performance are driving demand. In order to get right products in size and performance, packaging design and technology should be considered in device integration and implemented together in IPD designs. In addition, a comprehensive understanding of electrical and mechanical properties in component and system level design is important. This paper will highlight some of the recent advancements in SiP technology for IPD and integration as well as what is developed to address future technology requirements in IPD SiP solutions. The advantage and applications of SiP solution for IPD will be presented with several examples of IPD products. The design, assembly and packaging challenges and performance characteristics will be also discussed.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 786 ◽  
Author(s):  
Massimiliano Rossi ◽  
Riccardo Liberati ◽  
Marco Frasca ◽  
John Richardson

It is quite common for transceivers to operate with the RF receiver and transmitter working on different time slots. Typical applications are radars and transceivers in the field of communications. Generally, the receiver is turned off when the transmitter broadcasts and vice versa. This is done in order to prevent the transmitter from blinding the receiver or causing the RF low noise amplification (LNA) stage to saturate. When keeping a receiver active, some leakage of RF energy is inevitable, and therefore shielding is applied to mitigate spurious signals. However, there are many applications wherein the receiver cannot be turned off. To address these applications, we investigate the design and performance of a fully-analog self-jamming canceller able to operate in UHF (Ultra High Frequency) RFID devices. While the traditional cost to design and build this type of topology can be quite high, our proposal is based on a low-cost physical approach. In addition to using common SMT (Surface Mount Technology) devices, we leveraged a new piece of modular technology offered by X-Microwave which allows designers to easily produce RF solutions with a broad portfolio of modular system drop-in blocks. A prototype was realized and the measured results are in close agreement with theoretical simulations. Significant damping of the leaked signal in the receiving channel was realized.


2011 ◽  
Vol 483 ◽  
pp. 471-474
Author(s):  
Wei Ping Chen ◽  
Qing Yi Wang ◽  
Liang Yin ◽  
Zhi Ping Zhou

In this work, an ASIC interface for quartz rate sensor (QRS) is introduced. Based on 0.6μm 18V N-well CMOS process, it is the first to be realized in the domestic. This chip has a minimized size of 5×4.4mm2. Compared with traditional interface constructed by separate devices, such interface implemented with integrated circuits is advantageous in size and power consumption. This satisfies the requirements of miniature and low power consumption in space industry and military domain. The test results show that this interface features low noise, high linearity, and stable operation. Integrated with the sensor, the entire system presents high performance in short term bias stability, nonlinearity, output noise, bias variation over temperature, and power consumption.


2014 ◽  
Vol 530-531 ◽  
pp. 217-220
Author(s):  
Hwang Cherng Chow ◽  
Bing Shiun Tang

In this paper, a high performance current-mode instrumentation amplifier has been proposed with low noise, low power and high CMRR features. The proposed design can adjust the gain with an external resistor for the processing of various biomedical signals. To reduce the noise of the amplifier, two design methods including PMOS input and lateral pnp BJT input have been implemented to improve the prior arts. To meet the single power supply need, a biomedical voltage level shifter is also proposed for low cost CMOS implementation. Based on the post-layout simulation results, the presented current-mode amplifier achieves high CMRR over 120 dB, power consumption of 61 uW at 1.8-V supply using standard 0.18-um CMOS technology.


2020 ◽  
Vol 10 (18) ◽  
pp. 6222 ◽  
Author(s):  
Girts Bumanis ◽  
Jelizaveta Zorica ◽  
Diana Bajare

The potential of phosphogypsum (PG) as secondary raw material in construction industry is high if compared to other raw materials from the point of view of availability, total energy consumption, and CO2 emissions created during material processing. This work investigates a green hydraulic ternary system binder based on waste phosphogypsum (PG) for the development of sustainable high-performance construction materials. Moreover, a simple, reproducible, and low-cost manufacture is followed by reaching PG utilization up to 50 wt.% of the binder. Commercial gypsum plaster was used for comparison. High-performance binder was obtained and on a basis of it foamed lightweight material was developed. Low water-binder ratio mixture compositions were prepared. Binder paste, mortar, and foamed binder were used for sample preparation. Chemical, mineralogical composition and performance of the binder were evaluated. Results indicate that the used waste may be successfully employed to produce high-performance binder pastes and even mortars with a compression strength up to 90 MPa. With the use of foaming agent, lightweight (370–700 kg/m3) foam concrete was produced with a thermal conductivity from 0.086 to 0.153 W/mK. Water tightness (softening coefficient) of such foamed material was 0.5–0.64. Proposed approach represents a viable solution to reduce the environmental footprint associated with waste disposal.


2016 ◽  
Vol 4 (39) ◽  
pp. 9197-9202 ◽  
Author(s):  
Kyu Min Sim ◽  
Seongwon Yoon ◽  
Dae Sung Chung

Suppressing noise current while maintaining high quantum efficiency is essential for realizing high-performance photodiodes.


Sign in / Sign up

Export Citation Format

Share Document