scholarly journals Phytochemistry and biological activities of Opuntia seed oils: Opuntia dillenii (Ker Gawl.) Haw. and Opuntia ficus-indica (L.) Mill. A review

2021 ◽  
Vol 67 (2) ◽  
pp. 49-64
Author(s):  
Mohamed Bouhrim ◽  
Saliha Bouknana ◽  
Hayat Ouassou ◽  
Salima Boutahiri ◽  
Nour Elhouda Daoudi ◽  
...  

Summary Opuntia species belong to semi-arid and arid regions of Mexico and the United States. O. ficus-indica and O. dillenii are commonly used in alternative medicine to treat various diseases. Up to date, several scientific works have been carried out on the different parts of these plants. However, over the last few years, studies have been focusing on the oil obtained from the fruit seeds of these species. For this reason, this study aims to draw the attention of researchers toward the phytochemical and the pharmacological effects of these two Opuntia oils, which would help set up other scientific projects that promote these products. Phytochemical studies have shown that these oils are rich in biologically active molecules, such as unsaturated fatty acids and phytosterols (mainly linoleic acid and β-sitosterol), as well as vitamin E, which is represented only by the γ-tocopherol. Besides, these oils are rich in polyphenols that protect them from photo-oxidation. Moreover, several studies have shown their antioxidant, anti-diabetic, antibacterial, antifungal, anti-inflammatory, hepatoprotective, and gastroprotective activities, as well as their hypolipidemic properties. The beneficial effects of these oils include also their ability to block the weight loss, and what makes them more interesting is their safety, according to the literature.

Author(s):  
Dmitry Olegovich Bokov

This review focuses on the Muscari armeniacum Leichtlin (Asparagaceae Juss) biologically active substances composition presented in the Aireal and underground parts and finding their possible therapeutic effects. The systematic review is dedicated to the composition of biologically active substances, including recent advances in the biological activity investigation, phytochemical studies, and biotechnology methods of plant material producing. Various electronic search engines such as Google, Google Scholar, scientific literature, publishing sites, and electronic databases such as PubMed, Wiley, Springer, and Science Direct had been searched and data obtained. Other online academic libraries such as E-library and specific ethnopharmacological literature had been searched systematically for more exhaustive information on the crude herbal drug. The chemical composition of M. armeniacum biologically active substances is established; it contains anthocyanins (delphinidin and cyanidin derivatives), homoisoflavonoids, polyhydroxylated pyrrolizidine alkaloids (hyacinthacines A1, A2, A3, and B3), oligoglycosides (Muscarosides), and ribosome-inactivating proteins (musarmins). Recent physicochemical analytical procedures for components determination and hyacinthacines synthesis pathways are mentioned. Moreover, future prospects and trends in the research of this plant have been proposed. We have reviewed researches conducted on M. armeniacum especially in areas of its use in medicine, phytochemicals, biological activity, and developed analytical methods. M. armeniacum possesses antioxidant, antimutagenic activity, and specific glycosidase inhibitory activity; M. armeniacum can be used for the production of potential anticancer, antiviral, antidiabetic, and anti-obesity drugs. It should be noted that more pharmacognostic, pharmacological studies are needed for giving further information on the clinical practice and standardization procedures for the crude herbal drug.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1468
Author(s):  
Antonella Fais ◽  
Giovanna Lucia Delogu ◽  
Sonia Floris ◽  
Benedetta Era ◽  
Rosaria Medda ◽  
...  

The aim of this review is to summarize all the compounds identified and characterized from Euphorbia characias, along with the biological activities reported for this plant. Euphorbia is one of the greatest genera in the spurge family of Euphorbiaceae and includes different kinds of plants characterized by the presence of milky latex. Among them, the species Euphorbia characias L. is an evergreen perennial shrub widely distributed in Mediterranean countries. E. characias latex and extracts from different parts of the plant have been extensively studied, leading to the identification of several chemical components such as terpenoids, sterol hydrocarbons, saturated and unsaturated fatty acids, cerebrosides and phenolic and carboxylic acids. The biological properties range between antioxidant activities, antimicrobial, antiviral and pesticidal activities, wound-healing properties, anti-aging and hypoglycemic properties and inhibitory activities toward target enzymes related to different diseases, such as cholinesterases and xanthine oxidase. The information available in this review allows us to consider the plant E. characias as a potential source of compounds for biomedical research.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoyi Wu ◽  
Xinbo Cai ◽  
Jiaxuan Ai ◽  
Chi Zhang ◽  
Nan Liu ◽  
...  

Safflower (Carthamus tinctorius L.) is a herbal plant with a long history of clinical application worldwide, such as coronary heart disease, hypertension, dysmenorrhea and amenorrhea. It is also extensively used as an important oilseed plant for hundreds of years in some countries, like China, India, Mexico and the United States. Therefore, safflower is believed as a crop with dual values of medicine and economy as well. Safflower polysaccharides (SPS), from the plant, are believed as one of the most important biologically active components with multiple pharmacological properties, including anti-tumor, immune regulation, anti-oxidation, and anti-cerebral ischemia reperfusion injury effects. The polysaccharides, from bee pollen of safflower, named PBPC, also attract the attention of researchers because of their particular origin and bioactivities. Although the extraction, purification, structure and biological activities of SPS and PBPC have been studied for decades, there is not any available review both concerning SPS and PBPC. In this condition, this paper aims to systematically review the research progress in extraction, purification, structural characteristics, and bioactivities of SPS and PBPC, and provide basis for the in-depth study about their structure-bioactivity relationship. It will serve as a methodological outline for further research in fields of new drug discovery and clinical application of SPS or PBPC, and simultaneously remind us of unresolved problems noted in the polysaccharide research.


2012 ◽  
Vol 65 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Elżbieta Weryszko-Chmielewska ◽  
Anna Matysik-Woźniak ◽  
Aneta Sulborska ◽  
Robert Rejdak

The centuries-old experience of folk medicine, nutritional traditions, and the results of numerous research studies show that plants of the genus <i>Plantago</i> can be used for medicinal, cosmetic, dietetic, and ritual purposes. In the phytochemical composition of <i>Plantago</i>, there is an abundance of biologically active substances (among others, glycosides, flavonoids, polysaccharides, and vitamins) exhibiting beneficial effects and, simultaneously, there is a low content of compounds that may exert a toxic effect. Scientific research has confirmed that <i>Plantago</i> plants have antioxidative, apoptosis-inhibiting, protective, healing-enhancing, spasmolytic, anthelmintic, and antimicrobial properties; they inhibit the development of some tumours, reduce the level of lipids in blood and inhibit tissue glycation. In phytotherapy, leaves, stems, and/or seeds of different plantain species are used. <i>Plantago</i> leaves and seeds are also used to manufacture creams, lotions, and face masks. Different parts of these plants (fresh plant material, extracts, or isolated substances) are also used in human and animal nutrition. Plantain leaves can be eaten like lettuce or added to salads, fried in pastry, used to prepare a tea, juice, or wine. Its seeds are added to cakes, bread, breakfast cereals, ice cream, and drinks, or they are cooked like groats. Animals fed with plantain can live longer and are healthier, while meat derived from such animals is tastier and healthier to humans. <i>Plantago</i> seeds are readily eaten by cage birds. Plantain pollen, produced in large amounts (up to 20,000 pollen grains per 1 stamen of <i>P. lancolata</i>), can cause allergies in sensitive people. Due to a long flowering period of plants of the genus <i>Plantago</i>, the effect of the allergenic factor persists for many weeks. In Poland days with the maximum concentration of airborne plantain pollen most often occur in July.


2019 ◽  
Vol 24 (36) ◽  
pp. 4207-4236 ◽  
Author(s):  
Catarina Garcia ◽  
Catarina Teodósio ◽  
Carolina Oliveira ◽  
Cláudia Oliveira ◽  
Ana Díaz-Lanza ◽  
...  

The study of natural sources such as plants, microorganisms and marine organisms has developed interest among the scientific community in recent years for their extensive and diverse chemical composition and consequent biological potential. The search for antitumor compounds is among the lead causes that justify phytochemical studies. Although some natural products have served as FDA approved chemotherapeutic agents, there is still a demand for the search of compounds with those characteristics. The Plectranthus genus has long been used in traditional medicine, and scientific studies have already proven its undeniable value as a source of bioactive compounds. Diterpenes are the most prominent biologically active group of secondary metabolites present in this genus. In particular, abietane diterpenes have long been studied for their biological activities, namely their anti-tumoral potential. In this review, abietane diterpenes isolated from Plectranthus genus with antiproliferative, antitumoral or cytotoxic potential are reported. In addition, a correlation between this subclass of diterpenes with their mechanisms of cell death has been discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xiaolong Ji ◽  
Chunyan Hou ◽  
Xudan Guo

The fruit Malus prunifolia (Malus micromalus Mak.), which belongs to the Rosaceae family, grows mostly in the upper-middle reaches of the Yellow River area. It has long been popular as a fruit commodity and as a natural remedy. Its main biologically active components include vitamin C, phenolics, flavonoids, polysaccharides, and triterpenic acids. Recent phytochemical studies on the fruit have shed some light on its biological activities, such as anticancer, immunomodulatory, antioxidant, immunostimulating, hepatoprotective, and gastrointestinal protective activities. A stronger focus on clinical studies and phytochemical characterization of the fruit will be essential for future research efforts. This minireview could be useful for predicting its other medicinal uses and its potential drug or food interactions, and it could be beneficial for people living in areas where the fruit is endemic and where healthcare resources are scarce.


2019 ◽  
Vol 20 (12) ◽  
pp. 3056 ◽  
Author(s):  
Pamela Maher

Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), currently affect more than 6 million people in the United States. Unfortunately, there are no treatments that slow or prevent disease development and progression. Regardless of the underlying cause of the disorder, age is the strongest risk factor for developing these maladies, suggesting that changes that occur in the aging brain put it at increased risk for neurodegenerative disease development. Moreover, since there are a number of different changes that occur in the aging brain, it is unlikely that targeting a single change is going to be effective for disease treatment. Thus, compounds that have multiple biological activities that can impact the various age-associated changes in the brain that contribute to neurodegenerative disease development and progression are needed. The plant-derived flavonoids have a wide range of activities that could make them particularly effective for blocking the age-associated toxicity pathways associated with neurodegenerative diseases. In this review, the evidence for beneficial effects of multiple flavonoids in models of AD, PD, HD, and ALS is presented and common mechanisms of action are identified. Overall, the preclinical data strongly support further investigation of specific flavonoids for the treatment of neurodegenerative diseases.


Author(s):  
Dmitry Olegovich Bokov

This review focuses on the Muscari armeniacum Leichtlin (Asparagaceae Juss) biologically active substances composition presented in the Aireal and underground parts and finding their possible therapeutic effects. The systematic review is dedicated to the composition of biologically active substances, including recent advances in the biological activity investigation, phytochemical studies, and biotechnology methods of plant material producing. Various electronic search engines such as Google, Google Scholar, scientific literature, publishing sites, and electronic databases such as PubMed, Wiley, Springer, and Science Direct had been searched and data obtained. Other online academic libraries such as E-library and specific ethnopharmacological literature had been searched systematically for more exhaustive information on the crude herbal drug. The chemical composition of M. armeniacum biologically active substances is established; it contains anthocyanins (delphinidin and cyanidin derivatives), homoisoflavonoids, polyhydroxylated pyrrolizidine alkaloids (hyacinthacines A1, A2, A3, and B3), oligoglycosides (Muscarosides), and ribosome-inactivating proteins (musarmins). Recent physicochemical analytical procedures for components determination and hyacinthacines synthesis pathways are mentioned. Moreover, future prospects and trends in the research of this plant have been proposed. We have reviewed researches conducted on M. armeniacum especially in areas of its use in medicine, phytochemicals, biological activity, and developed analytical methods. M. armeniacum possesses antioxidant, antimutagenic activity, and specific glycosidase inhibitory activity; M. armeniacum can be used for the production of potential anticancer, antiviral, antidiabetic, and anti-obesity drugs. It should be noted that more pharmacognostic, pharmacological studies are needed for giving further information on the clinical practice and standardization procedures for the crude herbal drug.


2014 ◽  
pp. 87-92
Author(s):  
Thi Hoai Nguyen ◽  
Thi Van Thi Tran ◽  
Trung Hieu Le ◽  
Thi Mai Huong Vo

Background: There are many beneficial effects such as reducing the risk of obesity, diabetes, hyperlipidemia and hypercholesterolemia from Amorphophallus sp. This reports are research results of physicochemical properties of glucomannan flour from tubers of Amorphophallus paeoniifolius cultivated in Thua Thien Hue. Materials: Glucomannan flour from tubers of Amorphophallus paeoniifolius (Dennst) Nicolson – Araceae cultivated in Thua Thien Hue. Method: Identify the quantity and physicochemical properties by many methods such as using enzymes, chemistry, physical chemistry, spectroscopic methods, laser analysis. Results: Identified starch and glucomannan quantity, physicochemical properties and indicators of microbiological of glucomannan flour. Conclusion: From the achieved results set up quality standards of glucomannan flour from tubers of Amorphophallus paeoniifolius cultivated in Thua Thien Hue. Key words: Glucomannan, starch, β-amylase.


Author(s):  
Harish Rajak ◽  
Murli Dhar Kharya ◽  
Pradeep Mishra

There are vast numbers of pharmacologically active heterocyclic compounds in regular clinical use. The presence of heterocyclic structures in diverse types of compounds is strongly indicative of the profound effects such structure exerts on physiologic activity, and recognition of this is abundantly reflected in efforts to find useful synthetic drugs. The 1,3,4-oxadiazole nucleus has emerged as one of the potential pharmacophore responsible for diverse pharmacological properties. Medical Literature is flooded with reports of a variety of biological activities of 2,5-Disubstituted-1,3,4-oxadiazoles. The present work is an attempt to summarize and enlist the various reports published on biologically active 2,5-disubstituted-1,3,4-oxadiazoles.


Sign in / Sign up

Export Citation Format

Share Document