scholarly journals Design and optimization of 1 × 2 N Y-branch optical splitters for telecommunication applications

2020 ◽  
Vol 71 (5) ◽  
pp. 353-358
Author(s):  
Stanislava Serečunová ◽  
Dana Seyringer ◽  
Heinz Seyringer ◽  
František Uherek

Abstract This paper presents the design and optimization of 1 × 2 N Y-branch optical splitters for telecom applications. A waveguide channel profile, used in the splitter design, is based on a standard silica-on-silicon material platform except for the lengths of the used Y-branches, design parameters such as port pitch between the waveguides and simulation parameters for all splitters were considered fixed. For every Y-branch splitter, insertion loss, non-uniformity, and background crosstalk are calculated. According to the minimum insertion loss and minimum non-uniformity, the optimum length for each Y-branch is determined. Finally, the individual Y-branches are cascade joined to design various Y-branch optical splitters, from 1 × 2 to 1 × 64.

2003 ◽  
Author(s):  
Hamid Hadim ◽  
Tohru Suwa

In this manuscript a systematic multidisciplinary electronic packaging design and optimization methodology based on the artificial neural networks technique is presented. This method is applied to a Ball Grid Array (BGA) package design as an example. Multidisciplinary criteria including thermal, structural (thermal strain), electromagnetic leakage, and cost are optimized simultaneously. A simplified routability criterion is also considered as a constraint. The artificial neural networks technique is used for thermal and structural performance predictions. Large calculation time reduction is achieved using the artificial neural networks, which also provide enough information to specify the individual weights for each design discipline within the objective function used for optimization. This methodology is able to provide the designers a clear view of the design trade-offs, which are represented in the objective function using various design parameters. This methodology can be applied to any electronic product design at any packaging level.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Wei An ◽  
Jun Wei ◽  
Xiaoyu Lu ◽  
Jian S. Dai ◽  
Yanzeng Li

AbstractCurrent research on robotic dexterous hands mainly focuses on designing new finger and palm structures, as well as developing smarter control algorithms. Although the dimensional synthesis of dexterous hands with traditional rigid palms has been carried out, research on the dimensional synthesis of dexterous hands with metamorphic palms remains insufficient. This study investigated the dimensional synthesis of a palm of a novel metamorphic multi-fingered hand, and explored the geometric design for maximizing the precision manipulation workspace. Different indexes were used to value the workspace of the metamorphic hand, and the best proportions between the five links of the palm to obtain the optimal workspace of the metamorphic hand were explored. Based on the fixed total length of the palm member, four nondimensional design parameters that determine the size of the palm were introduced; through the discretization method, the influence of the four design parameters on the workspace of the metamorphic hand with full-actuated fingers and under-actuated fingers was analyzed. Based on the analysis of the metamorphic multi-fingered hand, the symmetrical structure of the palm was designed, resulting in the largest workspace of the multi-fingered hand, and proved that the metamorphic palm has a massive upgrade for the workspace of underactuated fingers. This research contributed to the dimensional synthesis of metamorphic dexterous hands, with practical significance for the design and optimization of novel metamorphic hands.


2021 ◽  
Vol 30 (1) ◽  
pp. 19-27
Author(s):  
Kumar Gomathi ◽  
Arunachalam Balaji ◽  
Thangaraj Mrunalini

Abstract This paper deals with the design and optimization of a differential capacitive micro accelerometer for better displacement since other types of micro accelerometer lags in sensitivity and linearity. To overcome this problem, a capacitive area-changed technique is adopted to improve the sensitivity even in a wide acceleration range (0–100 g). The linearity is improved by designing a U-folded suspension. The movable mass of the accelerometer is designed with many fingers connected in parallel and suspended over the stationary electrodes. This arrangement gives the differential comb-type capacitive accelerometer. The area changed capacitive accelerometer is designed using Intellisuite 8.6 Software. Design parameters such as spring width and radius, length, and width of the proof mass are optimized using Minitab 17 software. Mechanical sensitivity of 0.3506 μm/g and Electrical sensitivity of 4.706 μF/g are achieved. The highest displacement of 7.899 μm is obtained with a cross-axis sensitivity of 0.47%.


Author(s):  
Irsalan Arif ◽  
Hassan Iftikhar ◽  
Ali Javed

In this article design and optimization scheme of a three-dimensional bump surface for a supersonic aircraft is presented. A baseline bump and inlet duct with forward cowl lip is initially modeled in accordance with an existing bump configuration on a supersonic jet aircraft. Various design parameters for bump surface of diverterless supersonic inlet systems are identified, and design space is established using sensitivity analysis to identify the uncertainty associated with each design parameter by the one-factor-at-a-time approach. Subsequently, the designed configurations are selected by performing a three-level design of experiments using the Box–Behnken method and the numerical simulations. Surrogate modeling is carried out by the least square regression method to identify the fitness function, and optimization is performed using genetic algorithm based on pressure recovery as the objective function. The resultant optimized bump configuration demonstrates significant improvement in pressure recovery and flow characteristics as compared to baseline configuration at both supersonic and subsonic flow conditions and at design and off-design conditions. The proposed design and optimization methodology can be applied for optimizing the bump surface design of any diverterless supersonic inlet system for maximizing the intake performance.


Author(s):  
Anton Sieganschin ◽  
Thomas Jaschke ◽  
Arne F. Jacob

Abstract This contribution deals with a frontend for interleaved receive (Rx)-/transmit (Tx)-integrated phased arrays at K-/Ka-band. The circuit is realized in printed circuit board technology and feeds dual-band Rx/Tx- and single-band Tx-antenna elements. The dual-band element feed is composed of a substrate-integrated waveguide (SIW) diplexer with low insertion loss, a low-noise amplifier (LNA), a bandpass filter, and several passive transitions. The compression properties of the LNA are identified through two-tone measurements. The results dictate the maximum allowable output power of the power amplifier. The single band feed consists of a SIW with several transitions. Simulation and measurement results of the individual components are presented. The frontend is assembled and measured. It exhibits an Rx noise figure of 2 dB, a Tx insertion loss of ~ 2.9 dB, and an Rx/Tx-isolation of 70 dB. The setup represents the unit cell of a full array and thus complies with the required half-wave spacing at both Rx and Tx.


2021 ◽  
Vol 36 (6) ◽  
pp. 726-733
Author(s):  
Yongjie Zhang ◽  
Xiaofeng Deng

In this study, 2D finite element (FE) solving process with the conformal perfectly matched layer (PML) is elucidated to perform the electromagnetic scattering computation. With the 2D monostatic RCS as the optimization objective, a sensitivity analysis of the basic design parameters of conformal PML (e.g., layer thickness, loss factor, extension order and layer number) is conducted to identify the major parameters of conformal PML that exerts more significant influence on 2D RCS. Lastly, the major design parameters of conformal PML are optimized by the simulated annealing algorithm (SA). As revealed from the numerical examples, the parameter design and optimization method of conformal PML based on SA is capable of enhancing the absorption effect exerted by the conformal PML and decreasing the error of the RCS calculation. It is anticipated that the parameter design method of conformal PML based on RCS optimization can be applied to the cognate absorbing boundary and 3D electromagnetic computation.


Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 749 ◽  
Author(s):  
Jang ◽  
Yoon ◽  
Cho ◽  
Jung ◽  
Lee ◽  
...  

In this paper, a germanium-based gate-metal-core vertical nanowire tunnel field effect transistor (VNWTFET) has been designed and optimized using the technology computer-aided design (TCAD) simulation. In the proposed structure, by locating the gate-metal as a core of the nanowire, a more extensive band-to-band tunneling (BTBT) area can be achieved compared with the conventional core–shell VNWTFETs. The channel thickness (Tch), the gate-metal height (Hg), and the channel height (Hch) were considered as the design parameters for the optimization of device performances. The designed gate-metal-core VNWTFET exhibits outstanding performance, with an on-state current (Ion) of 80.9 μA/μm, off-state current (Ioff) of 1.09 × 10−12 A/μm, threshold voltage (Vt) of 0.21 V, and subthreshold swing (SS) of 42.8 mV/dec. Therefore, the proposed device was demonstrated to be a promising logic device for low-power applications.


Author(s):  
Martin Hallmann ◽  
Benjamin Schleich ◽  
Sandro Wartzack

AbstractWhen using additive manufacturing processes, the choice of the numerous settings for the process and design parameters significantly influences the build and production time. To reduce the required build time, it is useful to adapt the parameters with the greatest influence. However, since the contribution of the individual parameters is not readily apparent, a sensible choice of process and design parameters can become a challenging task.Thus, the following article presents a method, that enables the product developer to determine the main contributors to the required build time of additively manufactured products. By using this sensitivity analysis method, the contributors of the individual parameters can be analyzed for a given parametrized CAD model with the help of an analysis-based build time estimation approach. The novelty of the contribution can be found in providing a method that allows studying both design and process parameters simultaneously, taking the machine to be used into account. The exemplary application of the presented method to a sample part manufactured by Fused Deposition Modeling demonstrates its benefits and applicability.


Volume 4 ◽  
2004 ◽  
Author(s):  
Hamid A. Hadim ◽  
Tohru Suwa

A new multidisciplinary design and optimization methodology in electronics packaging is presented. A genetic algorithm combined with multi-disciplinary design and multi-physics analysis tools are used to optimize key design parameters. This methodology is developed to improve the electronic package design process by performing multidisciplinary design and optimization at an early design stage. To demonstrate its capability, the methodology is applied to a Ball Grid Array (BGA) package design. Multidisciplinary criteria including thermal, thermal strain, electromagnetic leakage, and cost are optimized simultaneously. A simplified routability analysis criterion is treated as a constraint. The genetic algorithm is used for systematic design optimization while reducing the total computational time. The present methodology can be applied to any electronics product design at any packaging level from the chip level to the system level.


2012 ◽  
Vol 215-216 ◽  
pp. 847-850
Author(s):  
Shou Jun Wang ◽  
Xing Xiong ◽  
Hong Jie Wang

In the condition of alternating impact ,the nut-supports subassembly is analyzed according to uncertainty of design parameters. Firstly, a three-dimensional (3-D) finite element (FE) model of the nut-supports subassembly is built and is meshed,and the constraints and loads are imposed.Secondly,the model of nut-supports was assembled using the software ANSYS to understand the stress distribution and various parts of the deformation of the nut-supports and its weak links in the harmonic forces.Finally,socket head cap screw has not enough pre-load in the condition of alternating impact and will be simplified.It is analyzed and checked whether it is cut or not; which provides the reference data for design and optimization of the wave maker.


Sign in / Sign up

Export Citation Format

Share Document