scholarly journals Improved understanding of Sodium hydroxide concentration role and kinetic model of cryolite reactive extraction in cathode Spent Pot Linings

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Blaž Tropenauer ◽  
Dušan Klinar ◽  
Janvit Golob

Abstract Spent Pot Lining (SPL) cathode pot, waste from the aluminium smelting process needs detoxification from cyanides, washing out water-soluble salts and extraction of the cryolite (Na3AlF6) decomposition products to be recycled. Revealed cryolite decomposition mechanism with NaOH opens possibilities to explore its critical role in the reactive extraction process. Common Na+ ion from NaOH hinders the solubility of the product but also drives mass transfer to the reaction site. Reaction mass balance provides adequate liquid to solid ratio (L/S) and NaOH concentration range. A newly developed kinetic model based on Whitman film theory and NaOH mass flow enables prediction of the reaction time to decompose cryolite to a low enough level. Results show that the internal particle resistance to transport (1/ks) is 19 times larger than the external (1/kl) one and governs the whole process.

2015 ◽  
Vol 768 ◽  
pp. 53-61 ◽  
Author(s):  
Chuan Jing Ma ◽  
Jing Ying Li ◽  
Ren Jie Liu

Over the past century, numbers of hydrometallurgical processing technologies have been conducted for gold leaching in mining and second resource, such as cyanidation, being with high toxicity and low reaction rate, and non-cyanide---thiosulphate leaching and thiourea leaching, etc, having relatively high reagent consumption. Recently, ammonium thiocyanate was selected as leaching reagent in the laboratory study. Just as some papers shown, thiocyanate can be complexed tightly with Au+ or Au3+ to form water-soluble complexes according to the dynamic and thermodynamic system of thiocyanate gold and regenerated or obtained as a by-product in technological processes. And the extraction process is affected by many factors, such as thiocyanate concentration, oxidant concentration, liquid-solid ratio, temperature, and reaction time, especially pH and the category of oxidants, which can be chosen properly to make the method extensively applied in industrialization. Recent studies have shown that the gold leaching with thiocyanate under alkaline conditions is also viable using oxygen as oxidant. Then this article compares and analyzes the use of different oxidants in acid or alkali environment reaching a 96% leaching efficiency and the techniques of gold recycle from thiocyanate gold solutions. However, as the restriction for post-processing cost of thiocyanate and the strict requirement for the equipment in the acidic conditions or high pressure conditions, additional research should be directed towards making incorporation with other extraction methods perfectly. Two development tendencies are presented in this paper: (1) as additive; (2) as the lixiviant under alkaline or neutral conditions.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 713
Author(s):  
Muna Ali Abdalla ◽  
Fengjie Li ◽  
Arlette Wenzel-Storjohann ◽  
Saad Sulieman ◽  
Deniz Tasdemir ◽  
...  

The main objective of the present study was to assess the effects of sulfur (S) nutrition on plant growth, overall quality, secondary metabolites, and antibacterial and radical scavenging activities of hydroponically grown lettuce cultivars. Three lettuce cultivars, namely, Pazmanea RZ (green butterhead, V1), Hawking RZ (green multi-leaf lettuce, V2), and Barlach RZ (red multi-leaf, V3) were subjected to two S-treatments in the form of magnesium sulfate (+S) or magnesium chloride (−S). Significant differences were observed under −S treatments, especially among V1 and V2 lettuce cultivars. These responses were reflected in the yield, levels of macro- and micro-nutrients, water-soluble sugars, and free inorganic anions. In comparison with the green cultivars (V1 and V2), the red-V3 cultivar revealed a greater acclimation to S starvation, as evidenced by relative higher plant growth. In contrast, the green cultivars showed higher capabilities in production and superior quality attributes under +S condition. As for secondary metabolites, sixteen compounds (e.g., sesquiterpene lactones, caffeoyl derivatives, caffeic acid hexose, 5-caffeoylquinic acid (5-OCQA), quercetin and luteolin glucoside derivatives) were annotated in all three cultivars with the aid of HPLC-DAD-MS-based untargeted metabolomics. Sesquiterpene lactone lactucin and anthocyanin cyanidin 3-O-galactoside were only detected in V1 and V3 cultivars, respectively. Based on the analyses, the V3 cultivar was the most potent radical scavenger, while V1 and V2 cultivars exhibited antibacterial activity against Staphylococcus aureus in response to S provision. Our study emphasizes the critical role of S nutrition in plant growth, acclimation, and nutritional quality. The judicious-S application can be adopted as a promising antimicrobial prototype for medical applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Magda Ghanim ◽  
Nicola Relitti ◽  
Gavin McManus ◽  
Stefania Butini ◽  
Andrea Cappelli ◽  
...  

AbstractCD44 is emerging as an important receptor biomarker for various cancers. Amongst these is oral cancer, where surgical resection remains an essential mode of treatment. Unfortunately, surgery is frequently associated with permanent disfigurement, malnutrition, and functional comorbidities due to the difficultly of tumour removal. Optical imaging agents that can guide tumour tissue identification represent an attractive approach to minimising the impact of surgery. Here, we report the synthesis of a water-soluble fluorescent probe, namely HA-FA-HEG-OE (compound 1), that comprises components originating from natural sources: oleic acid, ferulic acid and hyaluronic acid. Compound 1 was found to be non-toxic, displayed aggregation induced emission and accumulated intracellularly in vesicles in SCC-9 oral squamous cells. The uptake of 1 was fully reversible over time. Internalization of compound 1 occurs through receptor mediated endocytosis; uniquely mediated through the CD44 receptor. Uptake is related to tumorigenic potential, with non-tumorigenic, dysplastic DOK cells and poorly tumorigenic MCF-7 cells showing only low intracellular levels and highlighting the critical role of endocytosis in cancer progression and metastasis. Together, the recognised importance of CD44 as a cancer stem cell marker in oral cancer, and the reversible, non-toxic nature of 1, makes it a promising agent for real time intraoperative imaging.


Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xiaodi Wang ◽  
Yongchao Zhang ◽  
Luyao Wang ◽  
Xiaoju Wang ◽  
Qingxi Hou ◽  
...  

AbstractAn efficient separation technology for hydrolysates towards a full valorization of bamboo is still a tough challenge, especially regarding the lignin and lignin-carbohydrate complexes (LCCs). The present study aimed to develop a facile approach using organic solvent extraction for efficiently fractionating the main components of bamboo hydrolysates. The high-purity lignin with only a trace of carbohydrates was first obtained by precipitation of the bamboo hydrolysate. The water-soluble lignin (WSL) fraction was extracted in organic solvent through a three-stage organic solvent extraction process, and the hemicellulosic sugars with increased purity were also collected. Furthermore, a thorough characterization including various NMR techniques (31P, 13C, and 2D-HSQC), GPC, and GC-MS was conducted to the obtained lignin-rich-fractions. It was found that the WSL fraction contained abundant functional groups and tremendous amount of LCC structures. As compared to native LCC of bamboo, the WSL fraction exhibited more typical LCC linkages, i.e. phenyl glycoside linkage, which is the main type of chemical linkage between lignin and carbohydrate in both LCC samples. The results demonstrate that organic phase extraction is a highly efficient protocol for the fractionation of hydrolysate and the isolation of LCC-rich streams possessing great potential applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Tangting Chen ◽  
Miaoling Li ◽  
Xuehui Fan ◽  
Jun Cheng ◽  
Liqun Wang

Differentiation of atrial fibroblasts into myofibroblasts plays a critical role in atrial fibrosis. Sodium tanshinone IIA sulfonate (DS-201), a water-soluble derivative of tanshinone IIA, has been shown to have potent antifibrotic properties. However, the protective effects of DS-201 on angiotensin II- (Ang II-) induced differentiation of atrial fibroblasts into myofibroblasts remain to be elucidated. In this study, human atrial fibroblasts were stimulated with Ang II in the presence or absence of DS-201. Then, α-smooth muscle actin (α-SMA), collagen I, and collagen III expression and reactive oxygen species (ROS) generation were measured. The expression of transforming growth factor-β1 (TGF-β1) and the downstream signaling of TGF-β1, such as phosphorylation of Smad2/3, were also determined. The results demonstrated that DS-201 significantly prevented Ang II-induced human atrial fibroblast migration and decreased Ang II-induced α-SMA, collagen I, and collagen III expression. Furthermore, increased production of ROS and expression of TGF-β1 stimulated by Ang II were also significantly inhibited by DS-201. Consistent with these results, DS-201 significantly inhibited Ang II-evoked Smad2/3 phosphorylation and periostin expression. These results and the experiments involving N-acetyl cysteine (antioxidant) and an anti-TGF-β1 antibody suggest that DS-201 prevent Ang II-induced differentiation of atrial fibroblasts to myofibroblasts, at least in part, through suppressing oxidative stress and inhibiting the activation of TGF-β1 signaling pathway. All of these data indicate the potential utility of DS-201 for the treatment of cardiac fibrosis.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2075
Author(s):  
Tan Phat Dao ◽  
Thanh Viet Nguyen ◽  
Thi Yen Nhi Tran ◽  
Xuan Tien Le ◽  
Ton Nu Thuy An ◽  
...  

Pomelo peel-derived essential oils have been gaining popularity due to greater demand for stress relief therapy or hair care therapy. In this study, we first performed optimization of parameters in the pomelo essential oil extraction process on a pilot scale to gain better insights for application in larger scale production. Then extraction kinetics, activation energy, thermodynamics, and essential oil quality during the extraction process were investigated during the steam distillation process. Three experimental conditions including material mass, steam flow rate, and extraction time were taken into consideration in response surface methodology (RSM) optimization. The optimal conditions were found as follows: sample weight of 422 g for one distillation batch, steam flow rate of 2.16 mL/min and extraction time of 106 min with the coefficient of determination R2 of 0.9812. The nonlinear kinetics demonstrated the compatibility of the kinetic model with simultaneous washing and unhindered diffusion with a washing rate constant of 0.1515 min−1 and a diffusion rate constant of 0.0236 min−1. The activation energy of the washing and diffusion process was 167.43 kJ.mol−1 and 96.25 kJ.mol−1, respectively. The thermodynamic value obtained at the ΔG° value was −35.02 kJ.mol−1. The quality of pomelo peel essential oil obtained by steam distillation was characterized by its high limonene content (96.996%), determined by GC-MS.


2015 ◽  
Vol 112 (6) ◽  
pp. E516-E525 ◽  
Author(s):  
Varnavas D. Mouchlis ◽  
Denis Bucher ◽  
J. Andrew McCammon ◽  
Edward A. Dennis

Defining the molecular details and consequences of the association of water-soluble proteins with membranes is fundamental to understanding protein–lipid interactions and membrane functioning. Phospholipase A2(PLA2) enzymes, which catalyze the hydrolysis of phospholipid substrates that compose the membrane bilayers, provide the ideal system for studying protein–lipid interactions. Our study focuses on understanding the catalytic cycle of two different human PLA2s: the cytosolic Group IVA cPLA2and calcium-independent Group VIA iPLA2. Computer-aided techniques guided by deuterium exchange mass spectrometry data, were used to create structural complexes of each enzyme with a single phospholipid substrate molecule, whereas the substrate extraction process was studied using steered molecular dynamics simulations. Molecular dynamic simulations of the enzyme–substrate–membrane systems revealed important information about the mechanisms by which these enzymes associate with the membrane and then extract and bind their phospholipid substrate. Our data support the hypothesis that the membrane acts as an allosteric ligand that binds at the allosteric site of the enzyme’s interfacial surface, shifting its conformation from a closed (inactive) state in water to an open (active) state at the membrane interface.


2020 ◽  
Vol 36 (02) ◽  
pp. 143-151
Author(s):  
Changhui Liu ◽  
Jianfeng Liu ◽  
Yansong Zhang ◽  
Sun Jin ◽  
Can Wang ◽  
...  

Dimensional accuracy of hull block plays a critical role in guaranteeing the whole ship accuracy and reducing the hull butt-joint cost. The current industry practice of dimensional control in shipbuilding mainly focuses on the prediction of cutting and welding deformation based on engineering experience. Its main limitation is that the propagation and accumulation of deviations in the whole building process are neglected. In this article, cutting errors, assembly deviations, welding shrinkages, turnover distortions, and thermal expansions generated at different stages are analyzed. The propagation and accumulation of deviations and variations in the double-bottom block building process are studied based on the measured data in the whole process. Finally, the correlations of deviations between the adjacent stage are concluded. The conclusions can be used to guide the accuracy control in the hull block building process and reduce dimension trimming.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Nancy Witowski ◽  
Greg Beilman

Introduction: Treatment of hemorrhage shock remains a clinical challenge despite decades of study. Investigation of metabolism during hemorrhagic shock and resuscitation may yield novel approaches for intervention strategies. Methods: Pigs underwent a standardized hemorrhagic shock protocol after general anesthesia and instrumentation. Animals were hemorrhaged via IVC cannula, then resuscitated to a goal of 80 mm Hg systolic blood pressure after 45 minutes. Animals were fully resuscitated after 8 hours and weaned and extubated at 24 hours after beginning experiment. Survivors were sacrificed at 48 hours post-hemorrhage. Muscle samples were obtained at baseline (prior to hemorrhage), shock45 (after 45 min of shock), and 8, 23, and 48 h post resuscitation (PR). Muscle samples were processed using a dual-phase extraction process and the water-soluble metabolites examined by 1H and 31P NMR. Results: The phosphocreatine:inorganic phosphate ratio decreases with shock and remains below baseline values at 48 h PR (A). Phosphoesters (glycolytic intermediates) increase during shock and return to levels below baseline at 48PR in successfully resuscitated pigs (B). Non-survivors exhibited higher levels of 1H NMR-visible lipids and of 31P NMR-visible ADP at baseline when compared to survivors (C). Conclusions: Hemorrhage shock induces metabolic changes observable with NMR spectroscopy. Survivors exhibited persistent metabolic changes not resolved at 48 hours. Response to hemorrhage and risk of mortality may be dependent on initial metabolic state.


QRB Discovery ◽  
2020 ◽  
Vol 1 ◽  
Author(s):  
Shilei Hao ◽  
David Jin ◽  
Shuguang Zhang ◽  
Rui Qing

AbstractCytokine release syndrome (CRS), or ‘cytokine storm’, is the leading side effect during chimeric antigen receptor (CAR)-T therapy that is potentially life-threatening. It also plays a critical role in viral infections such as Coronavirus Disease 2019 (COVID-19). Therefore, efficient removal of excessive cytokines is essential for treatment. We previously reported a novel protein modification tool called the QTY code, through which hydrophobic amino acids Leu, Ile, Val and Phe are replaced by Gln (Q), Thr (T) and Tyr (Y). Thus, the functional detergent-free equivalents of membrane proteins can be designed. Here, we report the application of the QTY code on six variants of cytokine receptors, including interleukin receptors IL4Rα and IL10Rα, chemokine receptors CCR9 and CXCR2, as well as interferon receptors IFNγR1 and IFNλR1. QTY-variant cytokine receptors exhibit physiological properties similar to those of native receptors without the presence of hydrophobic segments. The receptors were fused to the Fc region of immunoglobulin G (IgG) protein to form an antibody-like structure. These QTY code-designed Fc-fusion receptors were expressed in Escherichia coli and purified. The resulting water-soluble fusion receptors bind to their respective ligands with Kd values affinity similar to isolated native receptors. Our cytokine receptor–Fc-fusion proteins potentially serve as an antibody-like decoy to dampen the excessive cytokine levels associated with CRS and COVID-19 infection.


Sign in / Sign up

Export Citation Format

Share Document