scholarly journals Asphalt mixture and its time delay of stress after strain at change of temperature and frequency

2021 ◽  
Vol 16 (2) ◽  
pp. 133-140
Author(s):  
Ján Mandula ◽  
Jakub Bokomlaško

Abstract Materials in pavement construction are used due to their material properties. Asphalt mixtures, which are today most used during building pavement construction, have a significant place. Asphalt mixtures are classified as viscoelastic materials due to their material properties. This article focuses on the time delay of the stress behind the strain, which is a specific property for viscoelastic materials. It is particularly focused on one type of asphalt mixture, which is used in the binder course and in the upper base layer. The selected asphalt mixture was tested on a four-bending machine and the samples had a beam shape. The sample was tested at four temperatures and seven frequencies. In the discussion, the article focuses on the comparison of the time delay of the stress Δt behind the strain during the change of temperature and frequency. It is clear from the results that the selected asphalt mixture is significantly affected by the change in temperature as well as the change in frequency. The conclusion is devoted to a summary of the acquired knowledge and observation, which is focused on examples in practice.

2021 ◽  
Vol 1023 ◽  
pp. 121-126
Author(s):  
Van Bach Le ◽  
Van Phuc Le

Although small amount of binder in asphalt concrete mixture may commonly range from 3.5 to 5.5% of total mixture as per many international specifications, it has a significant impact on the total cost of pavement construction. Therefore, this paper investigated the effects of five carbon nanotubes contents of 0.05%, 0.1%, 0.15%, 0.2%, 0.25% by asphalt weight as an additive material for binder on performance characteristics of asphalt mixtures. Performance properties of CNTs modified asphalt mixtures were investigated through the Marshall stability (MS) test, indirect tensile (IDT) test, static modulus (SM) test, wheel tracking (WT) test. The results indicated that asphalt mixtures with CNT modified binder can improve both the rutting performance, IDT strength and marshall stability of tested asphalt mixtures significantly at higher percentages of carbon nanotubes. However, the issue that should be considered is the construction cost of asphalt pavement. Based on the asphalt pavement structural analysis and construction cost, it can be concluded that an optimum CNT content of 0.1% by asphalt weight may be used as additive for asphalt binder in asphalt mixtures.


Author(s):  
Jamilla Emi Sudo Lutif Teixeira ◽  
Aecio Guilherme Schumacher ◽  
Patrício Moreira Pires ◽  
Verônica Teixeira Franco Castelo Branco ◽  
Henrique Barbosa Martins

The influence of steel slag expansion level on the early stage performance of hot mix asphalt (HMA) is evaluated. Initially, samples of Linz-Donawitz type steel slag with different levels of expansion (6.71%, 3.16%, 1.33%) were submitted to physical, mechanical, and morphological characterization to assess the effects of expansion on individual material properties. Steel slag was then used as aggregate in HMA to verify the effects of its expansion characteristics on the volumetric and mechanical performance of the asphalt mixture. Four different asphalt mixtures were designed based on Marshall mix design, using asphalt cement (pen. grade 50/70), natural aggregate (granite), and steel slag (in three different levels of expansion). The mechanical characteristics of the asphalt mixture were evaluated based on results from Marshall stability, indirect tensile strength, and resilient modulus testing. A modified Pennsylvania testing method (PTM) was also performed on the studied asphalt mixtures to verify the potential of asphalt binder film to minimize the expansive reactions of steel slag. It was observed that the level of steel slag expansion changes some of the material’s individual properties, which can affect the volumetric parameters of the mix design. The use of steel slag as aggregate in HMA also improves the mechanical properties of non-aged asphalt mixtures. Moreover, the expansive characteristics of this material could be minimized when combined with other asphalt mixture components.


2021 ◽  
Vol 11 (17) ◽  
pp. 7992
Author(s):  
Yunhong Yu ◽  
Gang Xu ◽  
Tianling Wang ◽  
Huimin Chen ◽  
Houzhi Wang ◽  
...  

Nanoindentation has been applied in the field of asphalt mixtures, but, at the nano-scale, changes in the composition of the mixture and material properties can have a significant impact on the results. Therefore, it is necessary to investigate the feasibility of nanoindentation tests on different types of asphalt mixtures with different gradations and the influence of material properties and test methods on nanoindentation results. In this paper, the nanoindentation test results on three kinds of asphalt mixture (AC-13, SMA-13, and OGFC-13) with different aggregate gradations were investigated. The load-displacement curves and moduli obtained from the nanoindentation tests were analyzed. In addition, nanoindentation tests were carried out before and after polishing with different ratios of filler and asphalt (RFA) (0.8–1.6). On this basis, the morphology of asphalt specimens with different RFAs is observed by scanning electron microscopy (SEM) imaging. The results indicate that using the nanoindentation test to characterize the mechanical behavior of asphalt mixture, the confidence level of the dense-graded mixture is low, and non-dense-graded mixtures are used as much as possible. Moreover, results illustrate that the nanoindentation modulus tends to increase as the RFA increases. and the SEM chart shows that the higher the mineral powder content in the mastic, the more complex the bitumen and mineral powder interaction surface, confirming the influence of mineral powder content on the nanoindentation test results. Furthermore, the effect of polishing is almost insignificant.


2019 ◽  
Vol 8 (2) ◽  
pp. 1-15
Author(s):  
Lixandru Cătălina Georgiana ◽  
Dicu Mihai ◽  
Andrei Bogdan

Abstract This paper evaluates the possibility of using artificial aggregates from blast furnace slag, considered industrial waste, which can replace, in a certain dosage, the natural aggregates in the composition of an AB 22,4 asphalt mixture. Furthermore, it is presented the possibility to replace the usual filler with powders from industrial wastes such as the desulphurization waste, generated by the combustion of the energetic coal. Laboratory studies and researches are carried out according to prescribed techniques. For this purpose, for the evaluation of the performance of the asphalt mixture recipes will be evaluated by static and dynamic tests as described in AND 605: 2016. The results of this study show the possibility of using asphalt mixtures with different dosages of industrial wastes in composition. The results obtained from the laboratory tests have shown that materials from industrial waste can be used in the design of asphalt mixtures with the purpose of replacing natural materials, used in certain dosages, which demonstrates good behavior in interaction with the usual bituminous binder.


2018 ◽  
Vol 26 (2) ◽  
pp. 24-29 ◽  
Author(s):  
Juraj Šrámek

AbstractThe quality of a road is affected by its correct design, the appropriate use of materials, the effects of the climate, and the technological discipline. The deformation properties and fatigue of asphalt layers are important for the design and assessment of semi-rigid and flexible pavements. The assessment of deformation properties is performed by means of a dynamic impact test and the fatigue life of a particular asphalt mixture. An evaluation of the fatigue life is based on decreases in resistance or increases in deformations in different binders and mixtures. The test methods for the design and control of pavement construction materials determine the basic conditions valid for flexible matter. The Two-Point Bending Test was used for determining the deformation characteristics and the fatigue of asphalt mixtures at the Department of Construction Management in Zilina.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2169
Author(s):  
Song Li ◽  
Rui Xiong ◽  
Jiahui Zhai ◽  
Kaiyin Zhang ◽  
Wenyu Jiang ◽  
...  

In order to ensure the safety of traffic, asphalt pavement is commonly required to utilize aggregates with excellent anti-abrasion property. This results in the lack of high-quality aggregates. The incorporation of solid waste in the aggregates is regarded as a high potential alternative for solving this problem. Since its material properties, such as rough surface, high Polished Stone Value (PSV) and the excellent adhesion property of asphalt, Basic Oxygen Furnace (BOF) slag can effectively improve the skid resistance of asphalt mixtures. First, the material properties of BOF slag are reviewed in this study. Then, the skid resistance of asphalt mixtures and aggregates are commendably evaluated by the Polished Stone Value test, Wehner/Schulze Tester, Aachen Polishing Machine, British Pendulum Test and Sand Patch test. The physical and mechanical properties of BOF slag play a key role in asphalt mixtures. This review found that the skid resistance mechanism of the BOF slag asphalt mixture is governed by factors such as BOF slag properties, incorporation methods and gradation types. Finally, the economic and environmental benefits of BOF slag asphalt mixtures were discussed. In addition, the function of gas catalysis and the melting of ice and snow can be added to the BOF slag asphalt mixture for a cleaner development in engineering. Furthermore, the existing problems, research directions and corresponding measures in this field are directed towards more durable and functional asphalt pavement construction.


2021 ◽  
Vol 11 (19) ◽  
pp. 9268
Author(s):  
Francesca Russo ◽  
Cristina Oreto ◽  
Rosa Veropalumbo

The integration of circular economy principles in the design of road pavements raises the problem of obtaining high-performance asphalt mixtures for reduction of waste and environmental pollution compared to traditional solutions. In this study, the base and binder layers of road asphalt pavements were prepared by using reclaimed asphalt pavement and construction and demolition waste as coarse aggregates, while jet grouting waste and fly ash served as fillers. A leaching test was performed for the marginal materials, after which the engineering performances of the designed asphalt mixtures were investigated through laboratory tests. A life cycle assessment methodology was applied to determine the life cycle impacts of one cubic meter of each asphalt solution. Next, a multi-criteria decision analysis (MCDA) was performed for the solutions suggested for the binder and base layers. Finally, a sensitivity analysis was conducted to identify the most suitable MCDA solutions by varying the weights for a total of 24 different weight configurations. The results of this work revealed that the solutions utilizing jet grouting waste (in particular, the hot asphalt mixture for the binder layer and cold asphalt mixture for the base layer) were preferred to other traditional and alternative solutions in most decision-making scenarios.


2019 ◽  
Vol 276 ◽  
pp. 03003
Author(s):  
Leo Sentosa ◽  
S Subagio Bambang ◽  
Harmein Rahman ◽  
R. Anwar Yamin

Modifying asphalt aims to improve the performance of the asphalt pavement construction as indicated by increased resistance to permanent deformation and fatigue crack. Asbuton Semi Extraction is one of the materials that can be used for asphalt modification. The addition of Asbuton semi-extraction increases the value of Bitumen Stability Modulus, resistance to permanent deformation and can also increase the asphalt PG value, but require a higher temperature for mixing and compaction. The high temperatures for the manufacture of asphalt mixtures require considerable energy at a more expensive cost and will result in large emissions. The asphalt mixing technology currently being developed is Asphalt Warm Mix, that is asphalt mixture with mixing temperature below 1500°C. One method is to use zeolite additives. The asphalt mixture with the addition of synthetic zeolite can be prepared by mixing and compaction temperatures lower than 30°C of the hot mixture. From the Marshall test, it is known that zeolite addition of 0.3% of the total weight of the mixture gives the characteristic values of the asphalt mixture which still meets the requirements of the specification used. Increased zeolite levels minimize the value of mixed resistance to the immersion indicated by the IRS Marshall value.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Bowen Guan ◽  
Jianan Liu ◽  
Jiayu Wu ◽  
Jingyi Liu ◽  
Haitao Tian ◽  
...  

This article presents a study to evaluate the performance of the ecofriendly calcium sulfate whisker fiber- (CSWF-) reinforced asphalt mixture as a sustainable pavement material. Asphalt mixtures containing 0.2 wt.%, 0.4 wt.%, 0.6 wt.%, and 0.8 wt.% of the CSWF were designed by the Marshall method. Asphalt mixtures without fiber were also prepared as control samples. The Marshall test, wheel-tracking test, low-temperature bending test, water sensitivity test, and fatigue test were conducted to evaluate the performance of the CSWF asphalt mixture. And the mechanism of fiber reinforcement was discussed. The results showed that the CSWF could improve the high-temperature stability and low-temperature crack resistance of the asphalt mixture. Water stability of asphalt mixtures in the presence of the CSWF was also improved. When the CSWF content was 0.4 wt.% of the total mixture, the performance of the asphalt mixture is the best. Compared with the conventional asphalt mixture, the CSWF asphalt mixture not only utilized power plant waste effectively to preserve ecosystems but also improved the performance of the pavement, which is suggested to be used in sustainable pavement construction and rehabilitation.


Author(s):  
Farzaneh Tahmoorian ◽  
John Yeaman

The growing quantities of waste materials, lack of natural resources and shortage of landfill spaces represent the importance of finding innovative ways of reusing and recycling waste materials. Due to the large quantities of construction and demolition waste (CDW), recycling and utilization of Recycled Construction Aggregates (RCA) obtained from CDW in construction projects, including asphalt pavement construction, can be the most promising solution to this problem. Asphalt mixtures containing RCA have the problem of high bitumen absorption. Using plastic waste in RCA-contained asphalt mixtures reduces not only bitumen absorption but also the adverse environmental impacts associated with plastic waste disposal due to the nonbiodegradability of plastic waste. In addition, the demand reduction for virgin aggregates is another advantage resulting in subsequent economic advantages. This paper characterizes the effects of different types of plastic on the bitumen absorption and properties of asphalt mixtures containing RCA through laboratory investigation. Different types of plastic including High-Density Polyethylene (HDPE) and LowDensity Polyethylene (LDPE) were investigated in this research. The test results indicate that the plastic waste can be a viable material for improving the problem of high bitumen absorption of asphalt mixtures containing RCA.


Sign in / Sign up

Export Citation Format

Share Document