scholarly journals Anti-Cancer Effects of Huaier on Prostate Cancer; miRNA-Mediated Transcription Control Induced Both Inhibition of Active Progression and Prevention of Relapse

2021 ◽  
Vol 7 (1) ◽  
pp. 1-10
Author(s):  
Manami Tanaka ◽  

Prostate cancer is classified as mild malignant tumor, since the growth is slow, and also the early detection and monitoring of PSA and other cancer cell-specific markers are available among the target population in walk-in clinic even effect the bones and lymph nodes, it requires long term treatments which significantly decrease the lifespan in patients. Trametes robiniophila Murr (Huaier) has proved broad spectrum anti-cancer effects, which initiates the recovery of damaged bio physiological functions in the end by dose-dependent manner which proved the molecular basis of Huaier effects by total RNA and small non-coding RNA sequencing (“genome-scope” project) and that is based on the rescue of the disrupted transcriptional control based on individual capability and flexibility of genomic potential. Here we focused to show MEGA-DATA genome analysis results on inhibition of active progression in cancer in situ, and also prevents relapse of prostate cancer. Total sequencing of RNAs revealed massive SNP variances (average 89,473SNP variances per individual), however, it is unlikely that specific type variants influenced to the malignancy, process, and prognosis. On the other hand, the significant up-regulation and alteration of major ontogenesis and tumor suppressor genes were detected in transcribed genes, especially in altered (normalized) NFkB, TGFb, BRCA2 and p53 genes and their leading signaling pathways. These genetic alterations in transcriptomes were based on miRNA-mediated transcriptional control as reported drugs have not shown any effect. Thus, the present study provides the safe and effective treatment to prevent and inhibit prostate cancer progression, and also to maintain homeostasis in a long-range of stressful human life without excessive medical treatments.

2020 ◽  
Author(s):  
Manami Tanaka ◽  
Tomoo Tanaka ◽  
Fei Teng ◽  
Hong Lin ◽  
Chenying Xu ◽  
...  

Abstract Clinical significance of anti-cancer effects of Huaier has been emphasized recently. We have proved that a broad spectrum of Huaier effects was based on the rescue of the disrupted Hippo signalling pathway, especially through the rescue of transcriptional dysregulation. We initiated clinical research for thorough understanding of mode of action by total RNA- and small non-coding RNA-sequencing. Here we provide the surprising genomic plasticity by Huaier observed in the time course of recovery from cancer. The extensive changes in RNA editing events were first observed, such as average 92,427 SNP variances per individual (22,688 in normal control). The subsequent changes in the process of translation and transcription resulted in the drastic changes in number of up/down-regulated transcripts. The ratio of the changes at maximum was 85% (23,210/27,447). With the advent of many novel sequences found in small nuclear RNAs and the consequent gene-silencing derived from miRNA-mediated post-transcriptional control, quantitative and qualitative changes of expression in transcriptional factors (mean 1,115/person) contributed to rescue dysregulated functions occurred in almost all required physiological functions for cancer recovery. The transcription control was demonstrated as functional lineage map between the core transcriptional factor and functionally linked transcripts, and the recovery could be clearly shown as the silencing of those massive changes in the end. The genetic alterations, especially related to the inhibition of NFκB and TGF-β signalling pathways showed significant effects on the improvement of prognosis. Thus, Huaier therapy contributes to cancer cell death with damaged tissue regeneration by extensive and systematic genomic modulations.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4619
Author(s):  
Eun Yeong Lim ◽  
Joon Park ◽  
Yun Tai Kim ◽  
Min Jung Kim

Imipramine (IMI) is a tricyclic synthetic antidepressant that is used to treat chronic psychiatric disorders, including depression and neuropathic pain. IMI also has inhibitory effects against various cancer types, including prostate cancer; however, the mechanism of its anticancer activity is not well understood. In the present study, we investigated the antimetastatic and anti-invasive effects of IMI in metastatic castration-resistant prostate cancer PC-3 cells, with an emphasis on the serine/threonine protein kinase AKT-mediated nuclear factor kappa B (NF-κB) signaling pathway. While IMI did not induce cell death, it attenuated PC-3 cell proliferation. According to the wound healing assay and invasion assay, migration and invasion in PC-3 cells were significantly inhibited by IMI in a dose-dependent manner. IMI significantly downregulated p-AKT protein expression but upregulated phospho-extracellular signal-regulated kinase (ERK1)/2 protein expression levels. Furthermore, IMI treatment resulted in decreased AKT-mediated downstream signaling, including p-inhibitor of κB kinase (IKK)α/β, p-inhibitor of κB (IκBα), and p-p65. Inhibited NF-κB signaling reduced the secretion of several proinflammatory cytokines and chemokine by PC-3 cells. Overall, our study explored the negative correlation between the use of antidepressants and prostate cancer progression, showing that IMI attenuated cell viability, migration, and invasion of PC-3 cells by suppressing the expression of AKT and NF-κB-related signaling proteins and secretion of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1).


2016 ◽  
Vol 34 (2_suppl) ◽  
pp. 281-281 ◽  
Author(s):  
Ratish Gambhira ◽  
Elisa M. Ledet ◽  
Aryeneesh Dotiwala ◽  
Diptasri Mandal ◽  
A. Oliver Sartor

281 Background: Cell-free DNA (cfDNA) present in the plasma of advanced cancer patients can reflect tumor related genetic alterations. Recent data suggests copy number variations (CNVs) in AR-associated and DNA repair pathway genes play a potential role in prostate cancer progression. Here, we performed sequencing of cfDNA from 13 mCRPC patients to evaluate its potential in elucidating tumor related genetic variations. The long-term goal of our project is to correlate cfDNA derived genetic alterations with prostate cancer progression and/or therapeutic resistance/responses. Methods: cfDNA was isolated from 13 advanced mCRPC patient plasma samples using the Qiagen circulating nucleic acid kit. 100ng of cfDNA was utilized for library construction; and the libraries were paired-end sequenced on the Illumina HiSeq 2000. The resulting data was analyzed using the GATK best practices bioinformatics pipeline and the visualized using the SNP & Variation Suite v8.x. Results: The bioanalyzer profiles of cfDNA derived from mCRPC patients is highly fragmented with an average fragment size of 306-605bp. Although, several CNVs were found across the genome, we focused analysis on CNVs related to AR associated and DNA repair genes. Our preliminary analysis of cfDNA, despite low sequencing depth, shows full or partial amplifications in AR (13/13), and other genes including FOXA1, NCOR1, NCOR2 and/or PIK3CA (7/13) and NCOR2 (10/13). For DNA repair genes partial/full amplifications were present in BRAC1, BRAC2, ATM, CDK12, MLH1 and/or MSH2 (7/13). Deletions are less reliably detected in the highly fragmented cfDNA. The majority of these CNVs have been reported in the WGS studies from metastatic CRPC tissue derived genomic DNA (cBioPortal). We are currently validating cfDNA genomic alterations by comparing it to germ line DNA derived via qPCR. Conclusions: Our preliminary study indicates that AR and DNA repair related genetic alterations could be found in the cfDNA derived from metastatic CRPC patients. This warrants more detailed examination of these cfDNA genetic alterations for identifying clinically relevant issues in mCRPC patients.


2021 ◽  
Vol 10 (20) ◽  
pp. 4741
Author(s):  
Rebecca Pakradooni ◽  
Nishka Shukla ◽  
Kalpana Gupta ◽  
Jatinder Kumar ◽  
Ilaha Isali ◽  
...  

Growth signals, which typically originate from the surrounding microenvironment, are important for cells. However, when stimulation by growth factors becomes excessive and exceeds their threshold limit, deleterious effects may ensue. In patients with cancer, maintenance of tumors depends, at least in part, on growth factor stimulation, which can also facilitate cancer progression into advanced stages. This is particularly important when the tumor grows beyond its tissue boundaries or when it invades and colonizes other tissues. These aforementioned malignant events are known to be partly supported by elevated cytokine levels. Among the currently known growth signals, insulin-like growth factor (IGF)-1 and IL-6 have been previously studied for their roles in prostate cancer. Both IGF-1 and IL-6 have been reported to activate the RAPTOR independent companion of MTOR complex 2 (Rictor)/AKT/protein kinase C α (PKCα) signaling pathway as one of their downstream mechanisms. At present, research efforts are mainly focused on the exploration of agents that alter growth factor (such as IGF-1) and cytokine (such as IL-6) signaling for their potential application as therapeutic agents, as both of these have been reported to modulate disease outcome. In the present study, IGF-1 and IL-6 served distinct roles in the androgen responsive LNCaP cell line and in the androgen refractory PC-3 cell line in a dose- and time-dependent manner. Increased phosphorylation of Rictor at the Thr-1135 residue, AKT at the Ser-473 residue and PKCα at the Ser-657 residue were observed after treatment with IGF-1 and IL-6. Subsequently, it was found that diosmetin, a natural plant aglycone, had the potential to modulate the downstream signaling cascade of Rictor/AKT/PKCα to inhibit the progression of prostate cancer. Treatment of LNCaP and PC-3 cells with diosmetin inhibited the phosphorylation of Rictor (Thr-1135), AKT (Ser-473) and PKCα (Ser-657) in a dose-dependent manner. Furthermore, the Bax/Bcl-2 expression ratio was increased in response to diosmetin treatment, which would result in increased apoptosis. Based on these observations, diosmetin may represent a novel therapeutic target for prostate cancer.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 467 ◽  
Author(s):  
Nicolás Anselmino ◽  
Juan Bizzotto ◽  
Pablo Sanchis ◽  
Sofia Lage-Vickers ◽  
Emiliano Ortiz ◽  
...  

Background: Prostate cancer (PCa) dissemination shows a tendency to develop in the bone, where heme oxygenase 1 (HO-1) plays a critical role in bone remodeling. Previously by LC/ESI-MSMS, we screened for HO-1 interacting proteins and identified annexin 2 (ANXA2). The aim of this study was to analyze the relevance of ANXA2/HO-1 in PCa and bone metastasis. Methods: We assessed ANXA2 levels using a co-culture transwell system of PC3 cells (pre-treated or not with hemin, an HO-1 specific inducer) and the pre-osteoclastic Raw264.7 cell line. Results: Under co-culture conditions, ANXA2 mRNA levels were significantly modulated in both cell lines. Immunofluorescence analysis unveiled a clear ANXA2 reduction in cell membrane immunostaining for Raw264.7 under the same conditions. This effect was supported by the detection of a decrease in Ca2+ concentration in the conditioned medium. HO-1 induction in tumor cells prevented both, the ANXA2 intracellular relocation and the decrease in Ca2+ concentration. Further, secretome analysis revealed urokinase (uPA) as a key player in the communication between osteoclast progenitors and PC3 cells. To assess the clinical significance of ANXA2/HO-1, we performed a bioinformatics analysis and identified that low expression of each gene strongly associated with poor prognosis in PCa regardless of the clinico-pathological parameters assessed. Further, these genes appear to behave in a dependent manner. Conclusions: ANXA2/HO-1 rises as a critical axis in PCa.


Author(s):  
Shima Khajouee ◽  
Elham Baghbani ◽  
Ali Mohammadi ◽  
Behzad Mansoori ◽  
Dariush Shanehbandi ◽  
...  

Purpose: To investigate the downregulation of High Mobility Group AT-hook 2 (HMGA2) expression by small interfering RNAs (siRNAs) in PC3 prostate cancer cell line. HMGA2 belongs to the non-histone chromatin-binding protein family that serves as a crucial regulator of gene transcription. The overexpression of this gene is positively correlated with various prostate cancer-related properties. Thus, HMGA2 is an emerging target in prostate cancer treatment. This study aimed to examine the impact of siRNAs targeting HMGA2 on the viability, migration, and apoptosis processes of the PC3 prostate cancer cell line. Methods: siRNA transfection was conducted with a liposome-mediated approach. The mRNA and protein expression levels for HMGA2 are evaluated by qRT-PCR and western blot analysis. The cytotoxic properties of HMGA2-siRNA were measured by MTT assay on PC3 cells. The migration of PC3 cells was measured by implementing a wound-healing assay. Apoptosis measurement was also quantified by TUNEL assay. Results: Transfection with siRNA significantly decreased both mRNA and protein levels of the HMGA2 gene in a dose-dependent manner after 48 hours. Also, we demonstrated that the knockdown of HMGA2 led to a reduction in cell viability, migration ability, and enhanced apoptosis of PC3 cells in vitro. Conclusion: Our findings recommend that the specific siRNA of HMGA2 may efficiently be able to decrease prostate cancer progression. Therefore, it may be a promising adjuvant treatment in prostate cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nurul Azwa Abd Wahab ◽  
Faridah Abas ◽  
Iekhsan Othman ◽  
Rakesh Naidu

Diarylpentanoids exhibit a high degree of anti-cancer activity and stability in vitro over curcumin in prostate cancer cells. Hence, this study aims to investigate the effects of a diarylpentanoid, 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one (MS13) on cytotoxicity, anti-proliferative, apoptosis-inducing, anti-migration properties, and the underlying molecular mechanisms on treated androgen-independent prostate cancer cells, DU 145 and PC-3. A cell viability assay has shown greater cytotoxicity effects of MS13-treated DU 145 cells (EC50 7.57 ± 0.2 µM) and PC-3 cells (EC50 7.80 ± 0.7 µM) compared to curcumin (EC50: DU 145; 34.25 ± 2.7 µM and PC-3; 27.77 ± 6.4 µM). In addition, MS13 exhibited significant anti-proliferative activity against AIPC cells compared to curcumin in a dose- and time-dependent manner. Morphological observation, increased caspase-3 activity, and reduced Bcl-2 protein levels in these cells indicated that MS13 induces apoptosis in a time- and dose-dependent. Moreover, MS13 effectively inhibited the migration of DU 145 and PC-3 cells. Our results suggest that cell cycle-apoptosis and PI3K pathways were the topmost significant pathways impacted by MS13 activity. Our findings suggest that MS13 may demonstrate the anti-cancer activity by modulating DEGs associated with the cell cycle-apoptosis and PI3K pathways, thus inhibiting cell proliferation and cell migration as well as inducing apoptosis in AIPC cells.


2018 ◽  
Author(s):  
Koran S. Harris ◽  
Lihong Shi ◽  
Brittni M. Foster ◽  
Mary E. Mobley ◽  
Phyllis L. Elliott ◽  
...  

ABSTRACTCancer stem-like cells (CSCs) are associated with cancer progression, metastasis, and recurrence, and may also represent a subset of circulating tumor cells (CTCs). In our prior study, CTCs in advanced prostate cancer patients were found to express CD117/c-kit in a liquid biopsy. Whether CD117 expression played an active or passive role in the aggressiveness and migration of these CTCs remained an open question. In this study, we show that CD117 expression in prostate cancer patients is associated with decreased overall and progression-free survival and that activation and phosphorylation of CD117 increases in prostate cancer patients with higher Gleason grades. To determine how CD117 expression and activation by its ligand stem cell factor (SCF, kit ligand, steel factor) alter prostate cancer aggressiveness, we used LNCaP-C4-2 and PC3-mm human prostate cancer cells, which contain a CD117+ subpopulation. We demonstrate that CD117+ cells display increased proliferation and migration. In prostaspheres, CD117 expression enhances sphere formation. In both 2D and 3D cultures, stemness marker gene expression is higher in CD117+ cells. Using xenograft limiting dilution assays and serial tumor initiation assays, we show that CD117+ cells represent a CSC population. Combined, these data indicate that CD117 expression potentially promotes tumor initiation and metastasis. Further, in cell lines, CD117 activation by SCF promotes faster proliferation and invasiveness, while blocking CD117 activation with tyrosine kinase inhibitors (TKIs) decreased progression in a context-dependent manner. We demonstrate that CD117 expression and activation drives prostate cancer aggressiveness through the CSC phenotype and TKI resistance.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3350-3350 ◽  
Author(s):  
Julie M Crudele ◽  
Geerte L. Van Sluis ◽  
Paris Margaritis ◽  
Joshua I Siner ◽  
Michael Sliozberg ◽  
...  

Abstract Abstract 3350 Cancer is frequently associated with activation of coagulation, and a procoagulant state facilitates tumor metastasis. Recent studies have suggested that the activated protein C (aPC) pathway plays a role in modulating tumor metastasis, and this protection likely requires both the anticoagulant and cytoprotective effects of aPC. Notably, our early work revealed that the inactive precursor, zymogen PC (zyPC), can even more effectively protect against metastasis. The aim of this study was therefore to explore mechanisms through which zyPC could prevent metastatic cancer progression in a murine cancer model. A liver gene transfer model using viral vectors was utilized to achieve a wide range of sustained expression of wildtype (WT) or mutant murine zyPCs. C57BL/6 experimental mice expressing stable levels of zyPCs and age and gender matched control mice receiving PBS were injected intravenously with 2.5×105 murine melanoma B16F10 cells, which metastasize to the lungs. After 3 weeks the number of pulmonary tumors was determined. Expression of WT zyPC in C57BL/6s decreased the rates of metastasis in a dose-dependent manner compared to PBS controls (p<0.01; n=8–18/group). These effects were noted even in mice injected with low vector dose (200% zyPC expression). Conversely, when PC-deficient mice (3% of normal, n=7) were administered B16F10s without zyPC-expression, they did not survive the full 3 weeks, while their littermate controls (PC > 50% of normal, n=6) did despite high rates of metastasis. These data clearly demonstrate the protective role of zyPC in tumor progression. We then tested modified zyPCs to identify the critical functions responsible for our observations in this tumor model. Two mutants with minimal anticoagulant function, R15Q and S195A, were generated. zyPC-R15Q is unable to dock to the thrombin-thrombomodulin complex active site and so cannot be converted to aPC. Compared to PBS controls (n=7), mice expressing zyPC-R15Q still showed a significant decrease in the number of tumor foci (p<0.001; 75–99% reduction; n=13) similar to the WT zyPC (p=0.28; n=8). Mice expressing zyPC-S195A (n=12), which has a mutation in the serine protease active site, also showed a significant decrease in the number of tumor foci compared to PBS controls (n=8; p<0.05; 90–99% reduction). As with the R15Q, mutating the S195 did not affect the ability of zyPC to protect against metastasis (p=0.22). Next, we tested the importance of the main PC/aPC cellular receptors in our model. Binding to endothelial protein C receptor (EPCR) enhances activation of PC. We inhibited this binding by injecting anti-EPCR blocking antibody 1560 (J Thromb Haemost. 2005 3:1351) intraperitoneally one hour prior to the B16F10 cells. zyPC-expressing mice that received anti-EPCR antibody (n=22) still had a significant reduction in tumor rates compared to PBS controls (n=10; p<0.01; 45–75% reduction). Moreover, mice expressing zyPC had similar levels of protection whether they received the anti-EPCR antibody or an isotype control (n=22–24; p=0.31). EPCR binding not only increases activation of PC, it also mediates the cytoprotective effect by clustering with and facilitating the activation of the signaling protease-activated receptor 1 (PAR1). PAR1 −/− mice expressing zyPC (n=21) challenged with B16F10 cells still had reduced rates of metastasis compared to PAR1 −/− PBS controls (n=15; p<0.01; 67% reduction). The zyPC protection in PAR1 null mice was comparable to that in PAR1 +/− littermate controls (n=10; p=0.619). Collectively, these findings suggest a distinct mechanism by which zyPC modulates tumor progression independent of EPCR and PAR1, both of which are required for aPC-mediated protection. Despite elevated circulating levels of PC, zyPC-expressing mice did not suffer from increased blood loss following tail clipping or show prolonged activated partial thromboplastin times (aPTTs) compared to hemostatically normal mice. In conclusion, zyPC protects against metastatic cancer progression in a dose-dependent manner. Our data show for the first time that this zyPC effect is independent of its anticoagulant function. Furthermore, protection is not mediated through EPCR or PAR1, suggesting an alternative pathway by which zyPC limits tumor progression. These findings suggest that WT zyPC and variants with little to no anticoagulant function are safe and efficacious in preventing metastatic cancer progression. Disclosures: Van Sluis: PCT patent pending: Protein C: A Zymogen for Anti-Cancer Treatment Patents & Royalties. High:PCT patent pending: Protein C: A Zymogen for Anti-Cancer Treatment Patents & Royalties. Spek:PCT patent pending: Protein C: A Zymogen for Anti-Cancer Treatment Patents & Royalties. Arruda:PCT patent pending: Protein C: A Zymogen for Anti-Cancer Treatment Patents & Royalties.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 21079-21079
Author(s):  
G. Tonini ◽  
B. Vincenzi ◽  
M. Marra ◽  
A. Baldi ◽  
S. Addeo ◽  
...  

21079 Background: Aminobisphosphonates (ABPs) has a definite direct anti-tumour activity but a limited activity in vivo. Their molecular targets are still not completely defined. Therefore, we have studied the effects of zoledronic acid (ZOL) addition to prostate cancer PC3 cells on gene expression profile. Methods: We have treated PC3 cells with 100 μM ZOL for 24 hours, extracted mRNAs and probed on Affimetrix HG-U133. Thereafter, we have identified down modulated and upregulated genes and checked for modulation of mRNA with RT PCR and of the relative encoded proteins with western blotting. Results: We have found 6 down modulated and 32 upregulated genes. We have focused our attention on NDRG1 associated to the androgen-differentiation and on Cysteine rich 61 (CYR61) involved in the regulation of proliferation and angiogenesis. NDRG1 mRNA was up-regulated and CYR61 mRNA was downregulated by ZOL in a dose-dependent manner. Similar effects were observed at protein product levels with an about 2-fold change recorded already in cells treated with 50 μM ZOL. Interestingly, also Gefitinib, Sorafenib and Tipifarnib used at their IC:50s could induce changes in both NDRG1 and CYR61 expression, but 50 μM ZOL was about 2-fold more potent. On the other hand, cytotoxic agents such as docetaxel did not have any effect. The addition of farnesol (FOH) or geranylgeraniol (GGOH) to ZOL-treated cells was able to counteract the effect of ZOL on CYR61 expression partially or completely, respectively. On the other hand, both FOH and GGOH had poor effect on the regulation of NDRG1 expression induced by ZOL. Conclusions: ZOL induces a strong regulation of the expression of NDRG1 and CYR61 at both mRNA and protein levels that appears to be dose-dependent and specific. CYR61 modulation seems to be more dependent from the inhibition of geranylgeranylation processes while NDRG1 changes could be at least in part independent from the inhibition of isoprenylation induced by ZOL. The study of the biological relevance of these effects on the anti-cancer effects of ZOL is ongoing with small interference RNA approaches. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document