scholarly journals Resistance Rates of the most Isolated Bacteria from different Clinical Samples, Kerbala, Iraq

2020 ◽  
Vol 10 (03) ◽  
pp. 426-430
Author(s):  
Suhad Hadi Mohammed ◽  
Maysaa Saleh Mahdi ◽  
Mohanad Mohsin Ahmed ◽  
Ali Najm Al-Deen ◽  
Nargis Fadhil ◽  
...  

Determining the bacterial causative agents of infections by identifying their antimicrobial patterns will enable health institutions to limit the unnecessary use of antibiotics, and take active ways in preventing the spread of drug-resistant bacteria. This study aimed to identify the most common bacterial isolates responsible for infection and their antibiotic resistance rates. The results showed that Escherichia coli, Staphylococcus aureus (S aureus), and Pseudomonas aeruginosa (P. aeruginosa) represent the most common bacteria isolated with a percentage of 23.9, 18.8, and 16.2%, respectively. High resistance rates were found for the most common bacterial isolates. Other important findings are the presence of extended-spectrum B-lactamase (ESBL) producing bacteria and the appearance of hetero-resistance phenomenon. Moreover, the bacterial infection is mainly occurring in men. No significant correlation was observed in the type of isolated bacteria with patient admission status. E. coli strains were found to be highly resistant to amoxicillin-clavulanic acid, ceftriaxone (88.9%), ceftazidime (85.2%), trimethoprim-sulfamethoxazole (74.1%), and ciprofloxacin (59.3%). Whereas, the highest sensitivity rates were seen with meropenem antibiotic (92.6%). Concerning S. aureus isolates, 100, and approximately 91% of resistant rates were seen to penicillin and cefoxitin, respectively [methicillin-resistant S. aureus (MRSA)]. Approximately 50% of MRSA were vancomycin-resistant S. aureus (VRSA). Resistant rates of P. aeruginosa isolates to gentamycin and ciprofloxacin were 47.1%, amikacin 41.2%, and levofloxacin 35.3%. In conclusion, the current study might reveal that the isolated bacteria could be of critical priority carbapenem-resistant P. aeruginosa, and carbapenem-resistant and 3rd generation cephalosporin-resistant E. coli. In addition, the isolation of high priority bacteria includes vancomycin-resistant methicillin-resistant S. aureus.

2019 ◽  
Vol 27 (3) ◽  
pp. 319-326 ◽  
Author(s):  
Aylin Uskudar-Guclu ◽  
Mustafa Guney ◽  
Ali Korhan Sig ◽  
Selcuk Kilic ◽  
Mehmet Baysallar

Abstract Background/aim: This prospective study aimed to determine the presence of the most common carbapenemase genes, blaOXA-48, blaKPC, blaIMP, blaVIM and blaNDM on carbapenem resistant clinical K.pneumoniae and E.coli isolates. Materials and methods: Isolates were selected according to EUCAST guideline; gradient test and disc diffusion with both meropenem and ertapenem discs. Resistance rates of these isolates to other antimicrobial agents were also examined by disc diffusion method. Carbapenem resistance gene were investigated by using Real-Time PCR. Results: A total of 3845 E. coli and 1689 K.pneumoniae isolates from clinical samples between January 2015 and April 2017 were evaluated. The 419 isolates were found as carbapenem resistant but only the first resistant isolate (n=155; 126 K.pneumoniae and 29 E.coli) of each patient were included. Carbapenem resistant isolates were most frequently isolated from intensive care units (48.8%). Colistin was the most effective antibiotic (91.0%). The 121 (78.1%) of the tested isolates were positive for OXA-48 (103 K.pneumoniae and 18 E.coli) and 9 K. pneumoniae carrying blaNDM were also positive for blaOXA-48. VIM, IMP and KPC type carbapenemases were not detected in any isolates. Conclusion: Carbapenem-resistant pathogens have been shown to be able to develop resistance mechanisms with more than one carbapenemase encoding gene.


2018 ◽  
Vol 87 (2) ◽  
pp. 165-172 ◽  
Author(s):  
Jan Bardoň ◽  
Patrik Mlynárčik ◽  
Petra Procházková ◽  
Magdaléna Röderová ◽  
Kristýna Mezerová ◽  
...  

The study aimed to determine the occurrence ofEnterobacteriaceaeproducing broad-spectrum beta-lactamases, vancomycin-resistant enterococci (VRE) and methicillin-resistantStaphylococcus aureusstrains in poultry in Moravia, Czech Republic, including phenotypic and genotypic analyses of the extent of resistance. Using chromogenic screening media, a total of 240 clinical samples collected from poultry and the poultry farm environment were processed. Phenotypic tests identified 23 isolates of broad-spectrum beta-lactamase-producingEscherichia coliand one VRE isolate (Enterococcus faeciumwith VanA resistance). Methicillin-resistantStaphylococcus aureusstrains were not detected. Among the isolates producing broad-spectrum beta-lactamases, 17 produced extended-spectrum beta-lactamases, most frequently CTX-M; the remaining 6 isolates were CIT-type AmpC enzymes. No carbapenemase-producing strains were detected. Pulsed-field gel electrophoresis showed that 21E. colistrains (91%) were genetically unrelated isolates. Increasing resistance of bacteria to antibiotic agents poses a serious issue for both human and veterinary medicine globally. For humans, a potential source of resistant bacteria may be animals or their products entering the human food chain, for example poultry. The presented study extends existing knowledge about the occurrence of resistant bacteria in poultry in Moravia and describes the phenotype and genotype of their resistance to antibiotics.


2019 ◽  
Author(s):  
Muhammad Asaduzzaman ◽  
Muhammed Iqbal Hossain ◽  
Sumita Rani Saha ◽  
Md Rayhanul Islam ◽  
Niyaz Ahmed ◽  
...  

BACKGROUND Antimicrobial resistance is a widespread, alarming issue in global health and a significant contributor to human death and illness, especially in low and middle-income countries like Bangladesh. Despite extensive work conducted in environmental settings, there is a scarcity of knowledge about the presence of resistant organisms in the air. OBJECTIVE The objective of this protocol is to quantify and characterize the airborne resistomes in Bangladesh, which will be a guide to identify high-risk environments for multidrug-resistant pathogens with their spatiotemporal diversity. METHODS This is a cross-sectional study with an environmental, systematic, and grid sampling strategy focused on collecting air samples from different outdoor environments during the dry and wet seasons. The four environmental compartments are the frequent human exposure sites in both urban and rural settings: urban residential areas (n=20), live bird markets (n=20), rural households (n=20), and poultry farms (n=20). We obtained air samples from 80 locations in two seasons by using an active microbial air sampler. From each location, five air samples were collected in different media to yield the total bacterial count of 3rd generation cephalosporin (3GC) resistant <italic>Enterobacteriaceae</italic>, carbapenem-resistant <italic>Enterobacteriaceae</italic>, vancomycin-resistant <italic>Enterococci</italic> and methicillin-resistant <italic>Staphylococcus aureus</italic>. RESULTS The study started in January 2018, and the collection of air samples was completed in November 2018. We have received 800 air samples from 80 study locations in both dry and wet seasons. Currently, the laboratory analysis is ongoing, and we expect to receive the preliminary results by October 2019. We will publish the complete result as soon as we clean and analyze the data and draft the manuscript. CONCLUSIONS The existence of resistant bacteria in the air like those producing extended-spectrum beta-lactamases, carbapenem-resistant <italic>Enterobacteriaceae</italic>, vancomycin-resistant <italic>Enterococci</italic>, and methicillin-resistant <italic>Staphylococcus aureus</italic> will justify our hypothesis that the outdoor environment (air) in Bangladesh acts as a reservoir for bacteria that carry genes conferring resistance to antibiotics. To our knowledge, this is the first study to explore the presence of superbugs in the air in commonly exposed areas in Bangladesh.


2017 ◽  
Vol 3 (1) ◽  
pp. 11-15
Author(s):  
Sitesh Karn ◽  
Narayan Dutt Pant ◽  
Sanjeev Neupane ◽  
Saroj Khatiwada ◽  
Shaila Basnyat ◽  
...  

Background Carbapenems are considered as drugs of choice for the treatment of the infections caused by drug resistant bacteria. However, in the recent years the prevalence of carbapenem resistant gram negative bacteria has increased significantly. The main objective of this study was to determine the prevalence of carbapenemase producing gram negative bacteria among all the clinical isolates.Material and methods A total of 3246 non-repeated, different clinical specimens from patients attending Kathmandu Model Hospital, from July 2013 to January 2014 were cultured and the gram negative bacterial isolates obtained were subjected to identification with the help of colony morphology, Gram’s stain and conventional biochemical tests. Kirby-Bauer disk diffusion technique was used to perform antimicrobial susceptibility testing. Phenotypic confirmation of carbapenemase and AmpC beta-lactamase production was done by combined disc method.Results 890 samples showed the growth of bacterial pathogens. Out of total 769 gram negative bacteria, 57 were found to be carbapenem resistant. Of which, highest number (47) of the isolates were found to be metallo-β lactamase (MBL) producers. Six bacterial isolates produced both (Klebsiella pneumoniae carbapenemase) KPC and MBL, whereas only one isolate was found to be positive for both MBL and AmpC. Three bacterial strains showed carbapenem resistance due to over production of AmpC β-lactamase.Conclusion Among carbapenem resistant gram negative bacteria, MBL was present as the major enzyme responsible for resisting carbapenem antibiotics.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 466
Author(s):  
Herbert Galler ◽  
Josefa Luxner ◽  
Christian Petternel ◽  
Franz F. Reinthaler ◽  
Juliana Habib ◽  
...  

In recent years, antibiotic-resistant bacteria with an impact on human health, such as extended spectrum β-lactamase (ESBL)-containing Enterobacteriaceae, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE), have become more common in food. This is due to the use of antibiotics in animal husbandry, which leads to the promotion of antibiotic resistance and thus also makes food a source of such resistant bacteria. Most studies dealing with this issue usually focus on the animals or processed food products to examine the antibiotic resistant bacteria. This study investigated the intestine as another main habitat besides the skin for multiresistant bacteria. For this purpose, faeces samples were taken directly from the intestines of swine (n = 71) and broiler (n = 100) during the slaughter process and analysed. All samples were from animals fed in Austria and slaughtered in Austrian slaughterhouses for food production. The samples were examined for the presence of ESBL-producing Enterobacteriaceae, MRSA, MRCoNS and VRE. The resistance genes of the isolated bacteria were detected and sequenced by PCR. Phenotypic ESBL-producing Escherichia coli could be isolated in 10% of broiler casings (10 out of 100) and 43.6% of swine casings (31 out of 71). In line with previous studies, the results of this study showed that CTX-M-1 was the dominant ESBL produced by E. coli from swine (n = 25, 83.3%) and SHV-12 from broilers (n = 13, 81.3%). Overall, the frequency of positive samples with multidrug-resistant bacteria was lower than in most comparable studies focusing on meat products.


Author(s):  
Fatma Ben Abid ◽  
Clement K. M. Tsui ◽  
Yohei Doi ◽  
Anand Deshmukh ◽  
Christi L. McElheny ◽  
...  

AbstractOne hundred forty-nine carbapenem-resistant Enterobacterales from clinical samples obtained between April 2014 and November 2017 were subjected to whole genome sequencing and multi-locus sequence typing. Klebsiella pneumoniae (81, 54.4%) and Escherichia coli (38, 25.5%) were the most common species. Genes encoding metallo-β-lactamases were detected in 68 (45.8%) isolates, and OXA-48-like enzymes in 60 (40.3%). blaNDM-1 (45; 30.2%) and blaOXA-48 (29; 19.5%) were the most frequent. KPC-encoding genes were identified in 5 (3.6%) isolates. Most common sequence types were E. coli ST410 (8; 21.1%) and ST38 (7; 18.4%), and K. pneumoniae ST147 (13; 16%) and ST231 (7; 8.6%).


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 744
Author(s):  
Altaf Bandy ◽  
Bilal Tantry

Antimicrobial-resistance in Enterobacterales is a serious concern in Saudi Arabia. The present study retrospectively analyzed the antibiograms of Enterobacterales identified from 1 January 2019 to 31 December 2019 from a referral hospital in the Aljouf region of Saudi Arabia. The revised document of the Centers for Disease Control (CDC) CR-2015 and Magiorakos et al.’s document were used to define carbapenem resistance and classify resistant bacteria, respectively. The association of carbapenem resistance, MDR, and ESBL with various sociodemographic characteristics was assessed by the chi-square test and odds ratios. In total, 617 Enterobacterales were identified. The predominant (n = 533 (86.4%)) isolates consisted of 232 (37.6%), 200 (32.4%), and 101 (16.4%) Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis, respectively. In general, 432 (81.0%) and 128 (24.0%) isolates were of MDR and ESBL, respectively. The MDR strains were recovered in higher frequency from intensive care units (OR = 3.24 (1.78–5.91); p < 0.01). E. coli and K. pneumoniae resistance rates to imipenem (2.55 (1.21–5.37); p < 0.01) and meropenem (2.18 (1.01–4.67); p < 0.04), respectively, were significantly higher in winter. The data emphasize that MDR isolates among Enterobacterales are highly prevalent. The studied Enterobacterales exhibited seasonal variation in antimicrobial resistance rates towards carbapenems and ESBL activity.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1530
Author(s):  
Amanuel Balemi ◽  
Balako Gumi ◽  
Kebede Amenu ◽  
Sisay Girma ◽  
Muuz Gebru ◽  
...  

A study was carried out from August 2017 to February 2018 on lactating dairy cows, one-humped dromedary camels, and goats to determine mastitis in the Bule Hora and Dugda Dawa districts of in Southern Ethiopia. Milk samples from 564 udder quarters and udder halves from 171 animals consisting of 60 dairy cows, 51 camels, and 60 goats were tested for mastitis. Sixty-four positive udder milk samples were cultured, and bacterial mastitis pathogens were isolated and identified. The antibiotic resistance of bacterial isolates from milk with mastitis was tested against nine antimicrobials commonly used in the study area. Cow- and quarter-level prevalence of mastitis in dairy cows, camels, and goats was 33.3%, 26.3%, and 25% and 17.6%, 14.5%, and 20%, respectively. In cattle, the prevalence was significantly higher in Dugda Dawa than in Bule Hora. Major bacterial isolates were coagulase-negative Staphylococcus species (39.1%), S. aureus (17.2%), S. hyicus (14.1%), and S. intermedius and Escherichia coli (9.4% each). In camels, udder abnormality and mastitis were significantly higher in late lactation than in early lactation. Mastitis tends to increase with parity in camels. E. coli isolates were highly resistant to spectinomycin, vancomycin, and doxycycline, whereas most S. aureus isolates were multidrug-resistant. Most of the rural and periurban communities in this area consume raw milk, which indicates a high risk of infection with multidrug-resistant bacteria. We recommend a community-focused training program to improve community awareness of the need to boil milk and the risk of raw milk consumption.


2014 ◽  
Vol 81 (2) ◽  
pp. 713-725 ◽  
Author(s):  
John W. Schmidt ◽  
Getahun E. Agga ◽  
Joseph M. Bosilevac ◽  
Dayna M. Brichta-Harhay ◽  
Steven D. Shackelford ◽  
...  

ABSTRACTSpecific concerns have been raised that third-generation cephalosporin-resistant (3GCr)Escherichia coli, trimethoprim-sulfamethoxazole-resistant (COTr)E. coli, 3GCrSalmonella enterica, and nalidixic acid-resistant (NALr)S. entericamay be present in cattle production environments, persist through beef processing, and contaminate final products. The prevalences and concentrations of these organisms were determined in feces and hides (at feedlot and processing plant), pre-evisceration carcasses, and final carcasses from three lots of fed cattle (n= 184). The prevalences and concentrations were further determined for strip loins from 103 of the carcasses. 3GCrSalmonellawas detected on 7.6% of hides during processing and was not detected on the final carcasses or strip loins. NALrS. entericawas detected on only one hide. 3GCrE. coliand COTrE. coliwere detected on 100.0% of hides during processing. Concentrations of 3GCrE. coliand COTrE. colion hides were correlated with pre-evisceration carcass contamination. 3GCrE. coliand COTrE. coliwere each detected on only 0.5% of final carcasses and were not detected on strip loins. Five hundred and 42 isolates were screened for extraintestinal pathogenicE. coli(ExPEC) virulence-associated markers. Only two COTrE. coliisolates from hides were ExPEC, indicating that fed cattle products are not a significant source of ExPEC causing human urinary tract infections. The very low prevalences of these organisms on final carcasses and their absence on strip loins demonstrate that current sanitary dressing procedures and processing interventions are effective against antimicrobial-resistant bacteria.


2010 ◽  
Vol 54 (11) ◽  
pp. 4684-4693 ◽  
Author(s):  
George G. Zhanel ◽  
Melanie DeCorby ◽  
Heather Adam ◽  
Michael R. Mulvey ◽  
Melissa McCracken ◽  
...  

ABSTRACT A total of 5,282 bacterial isolates obtained between 1 January and 31 December 31 2008, inclusive, from patients in 10 hospitals across Canada as part of the Canadian Ward Surveillance Study (CANWARD 2008) underwent susceptibility testing. The 10 most common organisms, representing 78.8% of all clinical specimens, were as follows: Escherichia coli (21.4%), methicillin-susceptible Staphylococcus aureus (MSSA; 13.9%), Streptococcus pneumoniae (10.3%), Pseudomonas aeruginosa (7.1%), Klebsiella pneumoniae (6.0%), coagulase-negative staphylococci/Staphylococcus epidermidis (5.4%), methicillin-resistant S. aureus (MRSA; 5.1%), Haemophilus influenzae (4.1%), Enterococcus spp. (3.3%), Enterobacter cloacae (2.2%). MRSA comprised 27.0% (272/1,007) of all S. aureus isolates (genotypically, 68.8% of MRSA were health care associated [HA-MRSA] and 27.6% were community associated [CA-MRSA]). Extended-spectrum β-lactamase (ESBL)-producing E. coli occurred in 4.9% of E. coli isolates. The CTX-M type was the predominant ESBL, with CTX-M-15 the most prevalent genotype. MRSA demonstrated no resistance to ceftobiprole, daptomycin, linezolid, telavancin, tigecycline, or vancomycin (0.4% intermediate intermediate resistance). E. coli demonstrated no resistance to ertapenem, meropenem, or tigecycline. Resistance rates with P. aeruginosa were as follows: colistin (polymyxin E), 0.8%; amikacin, 3.5%; cefepime, 7.2%; gentamicin, 12.3%; fluoroquinolones, 19.0 to 24.1%; meropenem, 5.6%; piperacillin-tazobactam, 8.0%. A multidrug-resistant (MDR) phenotype occurred frequently in P. aeruginosa (5.9%) but uncommonly in E. coli (1.2%) and K. pneumoniae (0.9%). In conclusion, E. coli, S. aureus (MSSA and MRSA), P. aeruginosa, S. pneumoniae, K. pneumoniae, H. influenzae, and Enterococcus spp. are the most common isolates recovered from clinical specimens in Canadian hospitals. The prevalence of MRSA was 27.0% (of which genotypically 27.6% were CA-MRSA), while ESBL-producing E. coli occurred in 4.9% of isolates. An MDR phenotype was common in P. aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document