scholarly journals Long noncoding RNA HOTAIR interacts with Y-Box Protein-1 (YBX1) to regulate cell proliferation

2021 ◽  
Vol 4 (9) ◽  
pp. e202101139
Author(s):  
Siting Li ◽  
Qian Xiong ◽  
Minghai Chen ◽  
Bing Wang ◽  
Xue Yang ◽  
...  

HOTAIR is a long noncoding RNA (lncRNA) which serves as an important factor regulating diverse processes linked with cancer development. Here, we used comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) to explore the HOTAIR-protein interactome. We were able to identify 348 proteins interacting with HOTAIR, allowing us to establish a heavily interconnected HOTAIR-protein interaction network. We further developed a novel near-infrared fluorescent protein (iRFP)-trimolecular fluorescence complementation (TriFC) system to assess the interaction between HOTAIR and its interacting proteins. Then, we determined that HOTAIR specifically binds to YBX1, promotes YBX1 nuclear translocation, and stimulates the PI3K/Akt and ERK/RSK signaling pathways. We further demonstrated that HOTAIR exerts its effects on cell proliferation, at least in part, through the regulation of two YBX1 downstream targets phosphoenolpyruvate carboxykinase 2 (PCK2) and platelet derived growth factor receptor β. Our findings revealed a novel mechanism, whereby an lncRNA is able to regulate cell proliferation via altering intracellular protein localization. Moreover, the imaging tools developed herein have excellent potential for future in vivo imaging of lncRNA–protein interaction.

2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Jessica Rea ◽  
Valentina Menci ◽  
Paolo Tollis ◽  
Tiziana Santini ◽  
Alexandros Armaos ◽  
...  

Abstract Neuronal differentiation is a timely and spatially regulated process, relying on precisely orchestrated gene expression control. The sequential activation/repression of genes driving cell fate specification is achieved by complex regulatory networks, where transcription factors and noncoding RNAs work in a coordinated manner. Herein, we identify the long noncoding RNA HOTAIRM1 (HOXA Transcript Antisense RNA, Myeloid-Specific 1) as a new player in neuronal differentiation. We demonstrate that the neuronal-enriched HOTAIRM1 isoform epigenetically controls the expression of the proneural transcription factor NEUROGENIN 2 that is key to neuronal fate commitment and critical for brain development. We also show that HOTAIRM1 activity impacts on NEUROGENIN 2 downstream regulatory cascade, thus contributing to the achievement of proper neuronal differentiation timing. Finally, we identify the RNA-binding proteins HNRNPK and FUS as regulators of HOTAIRM1 biogenesis and metabolism. Our findings uncover a new regulatory layer underlying NEUROGENIN 2 transitory expression in neuronal differentiation and reveal a previously unidentified function for the neuronal-induced long noncoding RNA HOTAIRM1.


Author(s):  
Xiao-hui Sun ◽  
Wen-jie Fan ◽  
Zong-jian An ◽  
Yong Sun

Long noncoding RNA CRNDE (CRNDE) recently emerged as a carcinogenic promoter in various cancers including medulloblastoma. However, the functions and molecular mechanisms of CRNDE to the acquired drug resistance of medulloblastoma are still unclear. The transcript levels of CRNDE were examined in four medulloblastoma cell lines exposed to cisplatin treatment, and IC50 values were calculated. Effects of CRNDE knockdown or miR-29c-3p overexpression on cell viability, colony formation, apoptosis, migration, and invasion were assessed using the CCK-8, colony formation assay, flow cytometry, and Transwell assays, respectively. RNA pulldown and RNA-binding protein immunoprecipitation (RIP) were performed to confirm the molecular interactions between CRNDE and miR-29c-3p involved in medulloblastoma cells. The in vivo role of CRNDE knockdown or miR-29c-3p overexpression on tumor growth and apoptosis was evaluated in a xenograft mouse model of human medulloblastoma. The transcript levels of lncRNA CRNDE were significantly higher in cisplatin-treated tumor cells with higher IC50 values. Depletion of CRNDE inhibited tumor cell proliferation and colony formation, induced cell apoptosis, and suppressed migration and invasion in medulloblastoma cells. Moreover, overexpression of miR-29c-3p inhibited tumor cell proliferation and colony formation, migration, and invasion, and enhanced apoptosis and chemosensitivity to cisplatin. In addition, CRNDE was found to act as a miR-29c-3p sponge. Furthermore, in vivo experiments showed the CRNDE/miR-29c-3p interactions involved in medulloblastoma. Our study demonstrates that CRNDE acts as a critical mediator of proliferation, apoptosis, migration, invasion, and resistance to chemotherapeutics via binding to and negatively regulating miR-29c-3p in medulloblastoma cells. These results provide novel molecular targets for treatment of medulloblastoma.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yunyun Lan ◽  
Juan Su ◽  
Yaxin Xue ◽  
Lulu Zeng ◽  
Xun Cheng ◽  
...  

Background. Breast cancer (BRCA) is one of the most common cancers and the leading cause of cancer-related death in women. RNA-binding proteins (RBPs) play an important role in the emergence and pathogenesis of tumors. The target RNAs of RBPs are very diverse; in addition to binding to mRNA, RBPs also bind to noncoding RNA. Noncoding RNA can cause secondary structures that can bind to RBPs and regulate multiple processes such as splicing, RNA modification, protein localization, and chromosomes remodeling, which can lead to tumor initiation, progression, and invasion. Methods. (1) BRCA data were downloaded from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases and were used as training and testing datasets, respectively. (2) The prognostic RBPs-related genes were screened according to the overlapping differentially expressed genes (DEGs) from the TCGA database. (3) Univariate Cox proportional hazard regression was performed to identify the genes with significant prognostic value. (4) Further, we used the LASSO regression to construct a prognostic signature and validated the signature in the TCGA and ICGC cohort. (5) Besides, we also performed prognostic analysis, expression level verification, immune cell correlation analysis, and drug correlation analysis of the genes in the model. Results. Four genes (MRPL13, IGF2BP1, BRCA1, and MAEL) were identified as prognostic gene signatures. The prognostic model has been validated in the TCGA and ICGC cohorts. The risk score calculated with four genes signatures could largely predict overall survival for 1, 3, and 5 years in patients with BRCA. The calibration plot demonstrated outstanding consistency between the prediction and actual observation. The findings of online database verification revealed that these four genes were significantly highly expressed in tumors. Also, we observed their significant correlations with some immune cells and also potential correlations with some drugs. Conclusion. We constructed a 4-RBPs-based prognostic signature to predict the prognosis of BRCA patients, and it has the potential for treating and diagnosing BRCA.


2015 ◽  
Author(s):  
Ailone Tichon ◽  
Noa Gil ◽  
Yoav Lubelsky ◽  
Tal Havkin Solomon ◽  
Doron Lemze ◽  
...  

AbstractThousands of long noncoding RNA (lncRNA) genes are encoded in the human genome, and hundreds of them are evolutionary conserved, but their functions and modes of action remain largely obscure. Particularly enigmatic lncRNAs are those that are exported to the cytoplasm, including NORAD – an abundant and highly conserved cytoplasmic lncRNA. Most of the sequence of NORAD is comprised of repetitive units that together contain at least 17 functional binding sites for the two Pumilio homologs in mammals. Through binding to PUM1 and PUM2, NORAD modulates the mRNA levels of their targets, which are enriched for genes involved in chromosome segregation during cell division. Our results suggest that some cytoplasmic lncRNAs function by modulating the activities of RNA binding proteins, an activity which positions them at key junctions of cellular signaling pathways.


2020 ◽  
Author(s):  
Hua Zhao ◽  
Wenjing Wu ◽  
Xu Li ◽  
Wei Chen

Abstract Background: Glutamine-driven anaplerosis maintains the tricarboxylic acid (TCA) cycle by replenishing its carbon source of intermediates with the glutamine-derived carbons in cancer cells. Long noncoding RNA urothelial cancer associated 1 (UCA1), initially identified in bladder cancer, is associated with multiple cellular processes, including metabolic reprogramming. However, its characteristics in the anaplerosis context of bladder cancer (BLCA) remains elusive. Methods: The mechanism of UCA1 bound to and facilitated the combination of hnRNP I/L to the promoter of GPT2 gene was investigated by RNA pulldown, qRT-PCR, western blot, dual luciferase reporter assays, immunohistochemical staining, chromatin immunoprecipitation and chromatin isolation by RNA purification. Metabolomics analysis and metabolic flux analysis were conducted to assess the effects of UCA1, hnRNP I/L, and GPT2 on metabolic reprogramming of BLCA.Results: We identified UCA1 as a binding partner of heterogeneous nuclear ribonucleoproteins (hnRNPs) I and L, RNA-binding proteins with no previously known role in metabolic reprogramming. UCA1 and hnRNP I/L profoundly affected glycolysis, TCA cycle, glutaminolysis, and viability of BLCA cells. Importantly, UCA1 specifically bound to and facilitated the combination of hnRNP I/L to the promoter of glutamic pyruvate transaminase 2 (GPT2) gene, resulting in upregulated expression of GPT2 and enhanced glutamine-derived carbons in the TCA cycle. We also systematically confirmed the influence of UCA1, hnRNP I/L, and GPT2 on metabolism and proliferation via glutamine-driven anaplerosis in BLCA cells. Conclusions: Our study reveals the critical mechanism by which UCA1 forms a functional UCA1-hnRNP I/L complex that upregulates GPT2 expression to promote glutamine-driven TCA cycle anaplerosis, providing novel evidence that lncRNA regulates metabolic reprogramming in tumor cells.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Sarah Gilbertson ◽  
Joel D Federspiel ◽  
Ella Hartenian ◽  
Ileana M Cristea ◽  
Britt Glaunsinger

Alterations in global mRNA decay broadly impact multiple stages of gene expression, although signals that connect these processes are incompletely defined. Here, we used tandem mass tag labeling coupled with mass spectrometry to reveal that changing the mRNA decay landscape, as frequently occurs during viral infection, results in subcellular redistribution of RNA binding proteins (RBPs) in human cells. Accelerating Xrn1-dependent mRNA decay through expression of a gammaherpesviral endonuclease drove nuclear translocation of many RBPs, including poly(A) tail-associated proteins. Conversely, cells lacking Xrn1 exhibited changes in the localization or abundance of numerous factors linked to mRNA turnover. Using these data, we uncovered a new role for relocalized cytoplasmic poly(A) binding protein in repressing recruitment of TATA binding protein and RNA polymerase II to promoters. Collectively, our results show that changes in cytoplasmic mRNA decay can directly impact protein localization, providing a mechanism to connect seemingly distal stages of gene expression.


2019 ◽  
Vol 317 (4) ◽  
pp. H830-H839 ◽  
Author(s):  
Zhen Liu ◽  
Zhenming Kang ◽  
Yujian Dai ◽  
Huiming Zheng ◽  
Yingjun Wang

Infantile hemangiomas (IH) are a type of benign vascular neoplasm that may cause permanent scarring. Hemangioma-derived endothelial cells (HemECs) are commonly used as an in vitro model to study IH. Long noncoding RNA is a type of RNA transcript longer than 200 nucleotides that does not encode any protein. LINC00342 was discovered to regulate proliferation and apoptosis in nonsmall cell lung cancer. However, the role of LINC00342 in IH has never been reported before. Expressions of LINC00342 and miR-3619-5p were detected in proliferating versus normal skin tissues. Colony formation and Cell-Couting Kit 8 assays were carried out to study the effects on cell proliferation after knockdown and overexpression of LINC00342, respectively. Meanwhile caspase-3 activity and nucleosomal fragmentation assay were applied to detect cell apoptosis. Micro-RNA binding sites on LINC00342 and hepatoma-derived growth factor (HDGF) were predicted and confirmed via dual-luciferase reporter assay. Biotin RNA pulldown assay was used to verify the direct binding between RNA molecules. LINC00342 enhanced proliferation and inhibited apoptosis in HemECs. MiR-3619-5p targeted both LINC00342 and HDGF, where LINC00342 sponged miR-3619-5p and positively regulated HDGF. HDGF knockdown rescued the effects of LINC00342 on HemECs. The LINC00342-miR-3619-5p-HDGF signaling pathway could regulate cell proliferation and apoptosis in HemECs. NEW & NOTEWORTHY The role of LINC00342 in infantile hemangiomas has not yet been elucidated. This paper highlights the regulatory role of LINC00342 in cell proliferation and apoptosis in hemangioma-derived endothelial cells and the underlying molecular mechanisms. The findings would provide potential target for treatment of infantile hemangiomas.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Da-Qiao Ding ◽  
Kasumi Okamasa ◽  
Yuki Katou ◽  
Eriko Oya ◽  
Jun-ichi Nakayama ◽  
...  

AbstractPairing of homologous chromosomes in meiosis is essential for sexual reproduction. We have previously demonstrated that the fission yeast sme2 RNA, a meiosis-specific long noncoding RNA (lncRNA), accumulates at the sme2 chromosomal loci and mediates their robust pairing in meiosis. However, the mechanisms underlying lncRNA-mediated homologous pairing have remained elusive. In this study, we identify conserved RNA-binding proteins that are required for robust pairing of homologous chromosomes. These proteins accumulate mainly at the sme2 and two other chromosomal loci together with meiosis-specific lncRNAs transcribed from these loci. Remarkably, the chromosomal accumulation of these lncRNA–protein complexes is required for robust pairing. Moreover, the lncRNA–protein complexes exhibit phase separation properties, since 1,6-hexanediol treatment reversibly disassembled these complexes and disrupted the pairing of associated loci. We propose that lncRNA–protein complexes assembled at specific chromosomal loci mediate recognition and subsequent pairing of homologous chromosomes.


2020 ◽  
Vol 295 (17) ◽  
pp. 5626-5639 ◽  
Author(s):  
Ryoma Yoneda ◽  
Naomi Ueda ◽  
Kousuke Uranishi ◽  
Masataka Hirasaki ◽  
Riki Kurokawa

pncRNA-D is an irradiation-induced 602-nt long noncoding RNA transcribed from the promoter region of the cyclin D1 (CCND1) gene. CCND1 expression is predicted to be inhibited through an interplay between pncRNA-D and RNA-binding protein TLS/FUS. Because the pncRNA-D–TLS interaction is essential for pncRNA-D–stimulated CCND1 inhibition, here we studied the possible role of RNA modification in this interaction in HeLa cells. We found that osmotic stress induces pncRNA-D by recruiting RNA polymerase II to its promoter. pncRNA-D was highly m6A-methylated in control cells, but osmotic stress reduced the methylation and also arginine methylation of TLS in the nucleus. Knockdown of the m6A modification enzyme methyltransferase-like 3 (METTL3) prolonged the half-life of pncRNA-D, and among the known m6A recognition proteins, YTH domain-containing 1 (YTHDC1) was responsible for binding m6A of pncRNA-D. Knockdown of METTL3 or YTHDC1 also enhanced the interaction of pncRNA-D with TLS, and results from RNA pulldown assays implicated YTHDC1 in the inhibitory effect on the TLS–pncRNA-D interaction. CRISPR/Cas9-mediated deletion of candidate m6A site decreased the m6A level in pncRNA-D and altered its interaction with the RNA-binding proteins. Of note, a reduction in the m6A modification arrested the cell cycle at the G0/G1 phase, and pncRNA-D knockdown partially reversed this arrest. Moreover, pncRNA-D induction in HeLa cells significantly suppressed cell growth. Collectively, these findings suggest that m6A modification of the long noncoding RNA pncRNA-D plays a role in the regulation of CCND1 gene expression and cell cycle progression.


Sign in / Sign up

Export Citation Format

Share Document