Identification of bacteriological quality and antimicrobial resistance of microorganisms isolated from animal foods collected from the abattoir, butcher shops and local seafood market

Food Research ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 144-151
Author(s):  
P. Vijayalakshmi ◽  
A. Rajani Chowdary ◽  
P. Vidyullatha ◽  
M. Sharon Sushma

The current study aimed to isolate bacteria that harbour various animal food products like meat, chicken and seafoods collected from the abattoir, butcher shops and local seafood market and to determine the antimicrobial resistance pattern of isolated pathogens which are responsible for various foodborne illnesses in human beings. A total of forty raw animal product samples were collected from the abattoir, butcher shops and local seafood market of Visakhapatnam. The samples selected for the study include raw chicken, meat, crab, prawns and different varieties of fish. A classic random sampling technique was employed to collect the study samples. All the samples were processed immediately using standard microbiological protocols. The bacteria isolation and characterization were done by studying morphological characteristics with staining methods, cultural characteristics by isolating and growing the pathogenic microorganisms in various selective and differential culture media. Antimicrobial susceptibility testing was performed by the Kirby -Bauer method by following Clinical and Laboratory Standards Institute (CLSI) guidelines. EDTA-Disc Potentiation Test and Imipenem-EDTA Double disc synergy test are used to detect the metallo beta-lactamase production of isolated pathogens. The highest number of isolates belong to Salmonella species (18), Pseudomonas aeruginosa (18) followed by Vibrio species (14) and few isolates belong to Enterobacter species (4). Majority of the microbial isolates obtained in the current study were multidrug resistant. The isolates from the abattoir environments, slaughterhouses, fish markets were found to exhibit variable resistance pattern to aminoglycosides, macrolides, β-lactams, cephalosporins, quinolone antibiotics used in the present study and at the same time most of them were sensitive to carbapenem antibiotic imipenem. Antimicrobial resistance (AMR) prevents the designing and assessment of effective interventions. If such a link can be established, then the tracking of antibiotic use and consumption data could be furthermore used as a surrogate indicator for the risk of potential antibiotic resistance (ABR) emergence.

2015 ◽  
Vol 51 (6) ◽  
pp. 365-371 ◽  
Author(s):  
Nuno Beça ◽  
Lucinda Janete Bessa ◽  
Ângelo Mendes ◽  
Joana Santos ◽  
Liliana Leite-Martins ◽  
...  

Staphylococcus pseudintermedius is the most prevalent coagulase-positive Staphylococcus inhabitant of the skin and mucosa of dogs and cats, causing skin and soft tissue infections in these animals. In this study, coagulase-positive Staphylococcus species were isolated from companion animals, veterinary professionals, and objects from a clinical veterinary environment by using two particular culture media, Baird-Parker RPF agar and CHROMagar Staph aureus. Different morphology features of colonies on the media allowed the identification of the species, which was confirmed by performing a multiplex polymerase chain reaction (PCR). Among 23 animals, 15 (65.2%) harbored coagulase-positive Staphylococcus, being 12 Staphylococcus pseudintermedius carriers. Four out of 12 were methicillin-resistant S. pseudintermedius (MRSP). All veterinary professionals had coagulase-positive Staphylococcus (CoPS) species on their hands and two out of nine objects sampled harbored MRSP. The antimicrobial-resistance pattern was achieved for all isolates, revealing the presence of many multidrug-resistant CoPS, particularly S. pseudintermedius. The combined analysis of the antimicrobial-resistance patterns shown by the isolates led to the hypothesis that there is a possible crosscontamination and dissemination of S. aureus and S. pseudintermedius species between the three types of carriers sampled in this study that could facilitate the spread of the methicillin-resistance phenotype.


2006 ◽  
Vol 69 (4) ◽  
pp. 743-748 ◽  
Author(s):  
WONDWOSSEN A. GEBREYES ◽  
SIDDHARTHA THAKUR ◽  
W. E. MORGAN MORROW

Conventional swine production evolved to routinely use antimicrobials, and common occurrence of antimicrobial-resistant Salmonella has been reported. There is a paucity of information on the antimicrobial resistance of Salmonella in swine production in the absence of antimicrobial selective pressure. Therefore, we compared the prevalence and antimicrobial resistance of Salmonella isolated from antimicrobial-free and conventional production systems. A total of 889 pigs and 743 carcasses were sampled in the study. Salmonella prevalence was significantly higher among the antimicrobial-free systems (15.2%) than the conventional systems (4.2%) (odds ratio [OR] = 4.23; P < 0.05). Antimicrobial resistance was detected against 10 of the 12 antimicrobials tested. The highest frequency of resistance was found against tetracycline (80%), followed by streptomycin (43.4%) and sulfamethoxazole (36%). Frequency of resistance to most classes of antimicrobials (except tetracycline) was significantly higher among conventional farms than antimicrobial-free farms, with ORs ranging from 2.84 for chloramphenicol to 23.22 for kanamycin at the on-farm level. A total of 28 antimicrobial resistance patterns were detected. A resistance pattern with streptomycin, sulfamethoxazole, and tetracycline (n = 130) was the most common multidrug resistance pattern. There was no significant difference in the proportion of isolates with this pattern between the conventional (19.5%) and the antimicrobial-free systems (18%) (OR = 1.8; P > 0.05). A pentaresistance pattern with ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline was strongly associated with antimicrobial-free groups (OR = 5.4; P = 0.01). While showing the higher likelihood of finding antimicrobial resistance among conventional herds, this study also implies that specific multidrug-resistant strains may occur on antimicrobial-free farms. A longitudinal study with a representative sample size is needed to reach more conclusive results of the associations detected in this study.


2000 ◽  
Vol 44 (10) ◽  
pp. 2777-2783 ◽  
Author(s):  
P. L. Winokur ◽  
A. Brueggemann ◽  
D. L. DeSalvo ◽  
L. Hoffmann ◽  
M. D. Apley ◽  
...  

ABSTRACT Salmonella spp. are important food-borne pathogens that are demonstrating increasing antimicrobial resistance rates in isolates obtained from food animals and humans. In this study, 10 multidrug-resistant, cephalosporin-resistant Salmonellaisolates from bovine, porcine, and human sources from a single geographic region were identified. All isolates demonstrated resistance to cephamycins and extended-spectrum cephalosporins as well as tetracycline, chloramphenicol, streptomycin, and sulfisoxazole. Molecular epidemiological analyses revealed eight distinct chromosomal DNA patterns, suggesting that clonal spread could not entirely explain the distribution of this antimicrobial resistance phenotype. However, all isolates encoded an AmpC-like β-lactamase, CMY-2. Eight isolates contained a large nonconjugative plasmid that could transformEscherichia coli. Transformants coexpressed cephalosporin, tetracycline, chloramphenicol, streptomycin, and sulfisoxazole resistances. Plasmid DNA revealed highly related restriction fragments though plasmids appeared to have undergone some evolution over time. Multidrug-resistant, cephalosporin-resistant Salmonellaspp. present significant therapeutic problems in animal and human health care and raise further questions about the association between antimicrobial resistance, antibiotic use in animals, and transfer of multidrug-resistant Salmonella spp. between animals and man.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Oumer Abdu Muhie

Background. In the last decades, medicines have had an unprecedented positive effect on health, leading to reduced mortality and disease burden and consequently to an improved quality of life. The rapid and ongoing spread of antimicrobial-resistant organisms threatens our ability to successfully treat a growing number of infectious diseases. In the absence of the development of new generations of antibiotic drugs, appropriate use of existing antibiotics is needed to ensure the long-term availability of effective treatment for bacterial infections. Irrational use of antibiotics is an ongoing global public health problem that deserves more attention. This review is conducted to evaluate the prevalence of inappropriate antibiotic utilization and resistance to antibiotics in Ethiopia. Methods. Electronic search in PubMed/MEDLINE and Google was used to find published literature with reference lists of relevant articles searched manually. Titles and abstracts were initially screened for eligibility. The full texts of articles judged to be eligible were reviewed if they meet the inclusion criteria. Data were extracted on important variables like the sample size, region of the study, the inappropriate antibiotic use, bacterial detection rate, multidrug resistance pattern, and more other variables. Microsoft Excel was used for data extraction. Quantitative analysis was performed using STATA version 11. Results. The electronic searches identified 193 articles of which 33 were found eligible. The random-effects model was used to provide point estimates (with 95% confidence interval (CI)) of bacterial detection rate, inappropriate antibiotic use, and multidrug resistance rate to account for heterogeneity. The pooled bacteria detection rate was 29.1 with 95% CI (16.6–41.7). The pooled prevalence of multidrug resistant strains identified was 59.7% (95% CI: 43.5–75.9). The pooled estimate of inappropriate antibiotic use was 49.2% (95% CI: 32.2–66.2). The pooled proportion of self-antibiotic prescription was 43.3% (95% CI: 15.7–70.9). Other reasons for inappropriate antibiotic use included a wrong indication, wrong duration, improper route of administration, use of leftover antibiotics from a family member, and immature discontinuation of antibiotics. Conclusion and Recommendations. Inappropriate antibiotic use is a huge problem in Ethiopia, and many bacteria were resistant to commonly used antibiotics and similarly, multidrug-resistant bacterial strains are numerous. Appropriate antibiotic use should be ensured by prohibiting over-the-counter sale of antibiotics and strengthening antimicrobial stewardship.


2018 ◽  
Vol 16 (2) ◽  
pp. 178-183
Author(s):  
Dhiraj Shrestha ◽  
Pratigya Thapa ◽  
Dinesh Bhandari ◽  
Hiramani Parajuli ◽  
Prakash Chaudhary ◽  
...  

Background: The study was designed to provide account of etiological agents of urinary tract infection in pediatric patients and the antimicrobial resistance pattern plus biofilm producing profile of the isolates.Methods: The prospective study was conducted in Alka Hospital, Nepal with 353 clean catch urine samples from children. It was obtained during July 2014 to January 2015 which were first cultured by semi-quantitative method, followed by antimicrobial susceptibility testing and biofilm production assay on Congo red agar. Multidrug- resistance, extensively drug- resistance and pandrug- resistance among isolates were considered as per international consensus.Results: Out of 353 samples, 64 (18.13%) showed positive growth in culture, confirming urinary tract infection. E. coli, 44 (68.8%) was the predominant organism followed by Klebsiella spp. 6 (14.1%). Most E. coli were sensitive to amikacin (93.2%) followed by nitrofurantoin (86.4%), and highly resistant to ampicillin (95.5%). Of 64 isolates, 23 (35.93%) were found to be multidrug- resistant strains. Biofilm was produced by 36 (56.25%) isolates.Conclusions: This study showed higher biofilm production and resistance to in-use antibiotics rendering ineffective for empirical use. Regular surveillance of resistance patterns should be done to regulate multidrug- resistant bugs and to ensure effective management of urinary tract infection in children in a tertiary care setups.Keywords: AMR; antimicrobial resistance; biofilm; urinary tract infection; UTI.


2021 ◽  
pp. 158-164
Author(s):  
Ferdausi Ali ◽  
Tazriyan Noor Silvy ◽  
Tanim Jabid Hossain ◽  
Md. Kamal Uddin ◽  
Mohammad Seraj Uddin

Background and Aim: Dissemination of multidrug-resistant (MDR) Salmonella through food chains has serious health implications, with higher rates of morbidity and mortality. Broiler meat remains a major reservoir of Salmonella contamination. The lack of proper hygiene in local broiler operations has, therefore, prompted this research into the assessment of Salmonella contamination in local shops and associated antimicrobial resistance (AMR) phenotypes. Materials and Methods: A total of 55 broiler samples including skin, meat, and swab samples from chopping and dressing sites were included in the study. The samples were collected from broiler shops in Hathazari, Bangladesh, and screened for the presence of Salmonella strains using culture-based methods. The isolates were biochemically characterized and further tested for AMR to eight common antibiotics using the disk diffusion technique. Results: Salmonella contaminations were identified in 29% (16/55) of the broiler samples. Swab samples collected from the chopping sites appeared to be contaminated in higher proportions (33%) than those collected from the dressing areas (25%). On the other hand, the skin samples (50%) were detected with a higher percentage of contamination than the meat samples (25%). All Salmonella isolates showed resistance toward at least one of the eight antibiotics used. Although none of the isolates was resistant to all antibiotics, 18.75% showed resistance to a maximum of seven antibiotics. Resistance to nalidixic acid was most prevalent (87.5%), followed by sulfamethoxazole-trimethoprim (81.25%), erythromycin (81.25%), tetracycline (75%), streptomycin (56.25%), ampicillin-clavulanic acid (50%), chloramphenicol (43.75%), and cefotaxime (18.75%). The resistance patterns of the isolates were found to be highly diverse. The most frequently observed pattern was the following: Ampicillin-clavulanic acid-sulfamethoxazole-trimethoprim-nalidixic acid-tetracycline-chloramphenicol-streptomycin-erythromycin. Conclusion: The relatively high prevalence of MDR strains in the samples underlies an urgent need for surveillance and control measures concerning hygiene and antibiotic use in local broiler operations.


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 205 ◽  
Author(s):  
Rosalino Vázquez-López ◽  
Sandra Georgina Solano-Gálvez ◽  
Juan José Juárez Vignon-Whaley ◽  
Jorge Andrés Abello Vaamonde ◽  
Luis Andrés Padró Alonzo ◽  
...  

Acinetobacter baumannii (named in honor of the American bacteriologists Paul and Linda Baumann) is a Gram-negative, multidrug-resistant (MDR) pathogen that causes nosocomial infections, especially in intensive care units (ICUs) and immunocompromised patients with central venous catheters. A. baumannii has developed a broad spectrum of antimicrobial resistance, associated with a higher mortality rate among infected patients compared with other non-baumannii species. In terms of clinical impact, resistant strains are associated with increases in both in-hospital length of stay and mortality. A. baumannii can cause a variety of infections; most involve the respiratory tract, especially ventilator-associated pneumonia, but bacteremia and skin wound infections have also been reported, the latter of which has been prominently observed in the context of war-related trauma. Cases of meningitis associated with A. baumannii have been documented. The most common risk factor for the acquisition of MDR A baumannii is previous antibiotic use, following by mechanical ventilation, length of ICU/hospital stay, severity of illness, and use of medical devices. Current efforts focus on addressing all the antimicrobial resistance mechanisms described in A. baumannii, with the objective of identifying the most promising therapeutic scheme. Bacteriophage- and artilysin-based therapeutic approaches have been described as effective, but further research into their clinical use is required


Sign in / Sign up

Export Citation Format

Share Document