scholarly journals Antibacterial Effect of Lime (Citrus aurantifolia) Peel Extract in Preventing Biofilm Formation

2019 ◽  
Vol 2 (4) ◽  
Author(s):  
Jeffrey Jeffrey ◽  
Mieke H Satari ◽  
Dikdik Kurnia

The routine and long term use of chemicals to maintain oral and dental health have the potency to result in the emergence of side effects; therefore another strategy is needed as an alternative such as using antimicrobial agents extracted from plants. The purpose of this study is to review the effectiveness of lime (Citrus aurantifolia) peel extract as an antibacterial in preventing biofilm formation. Biofilm is a component consisting of bacteria in a self-produced polymeric matrix, attached to an inert surface, alive, and can survive because of its ability to capture nutrients and withstand adverse environmental conditions. Lime peel contains flavonoids which are the largest group of polyphenol compounds that can work as antioxidants and antibacterial by denaturing bacterial cell proteins and damaging bacterial cells. Flavonoids can also inhibit glucosyltransferase (GTF) activity of Streptococcus mutans to prevent biofilm formation. Lime peel extract inhibits the formation of the activity of the enzyme Streptococcus mutans. As a conclusion lime peel extract contains compounds with therapeutic potential and has the effect of inhibiting the formation of the activity of the enzyme Streptococcus mutans so that it can be used to inhibit the formation of biofilms. Keywords: antibacterial, biofilm, Citrus aurantifolia

2013 ◽  
Vol 20 (2) ◽  
pp. 126
Author(s):  
Zenia Adindaputri U ◽  
Nunuk Purwanti ◽  
Ivan Arie Wahyudi

Streptococcus mutans merupakan bakteri yang berperan sebagai agen utama penyebab karies gigi, yang memiliki enzim glukosiltransferase (GTF). Enzim GTF akan mengubah sukrosa menjadi fruktosa dan glukan. Salah satu herbal tradisional yang dapat berperan sebagai antibakteri adalah kulit jeruk nipis (Citrus aurantifolia Swingle) yang mengandung polifenol terutama flavonoid. Tujuan penelitian ini untuk mengetahui pengaruh ekstrak kulit jeruk nipis (Citrus aurantifolia Swingle) konsentrasi 10% terhadap aktivitas enzim GTF Streptococcus mutans. Penelitian ini menggunakan ekstrak kulit jeruk nipis konsentrasi 10% sebagai perlakuan, chlorhexidine gluconate 0,12% sebagai kontrol positif, serta akuades steril sebagai kontrol negatif. Metode penelitian ini terdiri dari tiga tahap yaitu penyiapan ekstrak kulit jeruk nipis konsentrasi 10%, penyiapan enzim GTF dari supernatan Streptococcus mutans, dan pengujian aktivitas enzim GTF melalui analisis konsentrasi fruktosa dengan menggunakan High Performance Liquid Chromatography (HPLC). Pembacaan luas area fruktosa dilakukan berdasarkan waktu retensi. Satu unit aktivitas enzim GTF di definisikan sebagai 1 µmol fruktosa/ml dari enzim/jam. Selanjutnya data yang diperoleh dianalisis secara statistik dengan one way ANOVA.Hasil perhitungan aktivitas enzim GTF dengan one way ANOVA menunjukkan perbedaan yang signifikan antara kelompok perlakuan dengan kelompok kontrol negatif (p<0,05), dan tidak terdapat perbedaan yang signifikan dengan kontrol positif. Kesimpulan dari penelitian ini adalah ekstrak kulit jeruk nipis konsentrasi 10% dapat menghambat aktivitas enzim glukosiltransferase Streptococcus mutans. The Influence of 10% Concentrate of Citrus Aurantifolia Swingle on The Activities of Streptococcus Mutans Glucocyl Transferase Enzyme. Streptococcus mutans is a bacteria which has glucosyl transferase (GTF) enzyme and acts as the main agent that causes dental caries. GTF enzyme will convert sucrose into fructose and glucan. Lime peel (Citrus aurantifolia Swingle) is one of the traditional herbs which has flavonoid as an antibacterial agent. The purpose of this research is to investigate the effect of 10% concentration of lime peel extract (Citrus aurantifolia Swingle) to the activity of GTF enzyme Streptococcus mutans.This research used 10% concentration of  lime peel extract as the treatment, 0.12% chlorhexidine gluconate as a positive control, and distillate water as anegative control. The method of this research consists of three steps; preparing the lime peel extract concentration of 10%, preparing the GTF enzyme from the supernatant of Streptococcus mutans, and testing GTF enzyme activity by analyzing the fructose concentration using High Performance Liquid Chromatography (HPLC). Perusal of the fructose area was based on the retention time of fructose. One unit of GTF enzyme activity is defined as the 1 μmol fructose / ml of enzyme / hour.  The obtained data then were analyzed by one way ANOVA. The result showed a significant difference between treatment group with the negative control (p <0.05), and there are no significant difference with the positive control. This research concludes that 10% lime peel extract can inhibit the GTF enzyme activity of Streptococcus mutans.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1423
Author(s):  
Nicola Mangieri ◽  
Roberto Foschino ◽  
Claudia Picozzi

Shiga toxin-producing Escherichia coli are pathogenic bacteria able to form biofilms both on abiotic surfaces and on food, thus increasing risks for food consumers. Moreover, biofilms are difficult to remove and more resistant to antimicrobial agents compared to planktonic cells. Bacteriophages, natural predators of bacteria, can be used as an alternative to prevent biofilm formation or to remove pre-formed biofilm. In this work, four STEC able to produce biofilm were selected among 31 different strains and tested against single bacteriophages and two-phage cocktails. Results showed that our phages were able to reduce biofilm formation by 43.46% both when used as single phage preparation and as a cocktail formulation. Since one of the two cocktails had a slightly better performance, it was used to remove pre-existing biofilms. In this case, the phages were unable to destroy the biofilms and reduce the number of bacterial cells. Our data confirm that preventing biofilm formation in a food plant is better than trying to remove a preformed biofilm and the continuous presence of bacteriophages in the process environment could reduce the number of bacteria able to form biofilms and therefore improve the food safety.


2021 ◽  
Vol 9 (1) ◽  
pp. 18-26
Author(s):  
Ade Maria Ulfa ◽  
◽  
Nofita Nofita ◽  
Bangun Saras Sandi ◽  
◽  
...  

ABSTRACT Sweat is produced by the apocrine glands, if infected by bacteria that play a role in the decay process will certainly produce foot odor. Some of the bacteria that cause, including Staphylococcus epidermis, Corynebacterium acne and there is one bacterium that causes pungent foot odor that is Bacillus subtilis. Bacillus subtilis enzyme leucine dehydrogenase produced the highest, resulting in isovaleric acid foot odor. Lime peel (Citrus aurantifolia) has the potential to be developed for the antibacterial active ingredient of foot odor contained in tannins, alkaloids and flavonoids. Spray can be effective for inhibition of feet due to water fleas or bacterial infections. The purpose of this research is to test the inhibitory zone of the preparation of foot odor spray ethanol extract of lime peel (Citrus aurantifolia) with variations of gelling agent. Bacterial inhibition zone testing on extracts of lime peel spray preparations using the disc method. This test was carried out on spray with extract concentration of 0% extract base carbopol, 0% extract base HPMC, 0.2% extract base carbopol, 0.2% extract base HPMC, 0.4% extract base carbopol, 0.4% extract base HPMC and positive control with an average inhibition zone of 9,13 mm, 9,12 mm, 11,86 mm, 11,29 mm, 13,17 mm, 12,30 mm, 8,13 mm against the bacterium Bacillus subtilis. Antibacterial test results were analyzed using ONE WAY ANOVA, the results of statistical analysis on the preparation of lime peel extract showed a significant inhibition zone difference of 0.000 (P = <0.05) between all concentrations. Lime peel extract spray is effective in inhibiting the bacterium Bacillus subtilis. Key words: Sweat of foot odor, Lime skin (Citrus aurantifolia), Spray, bacteri Bacillus subtilis


Author(s):  
Vivien Novarina Kasim ◽  
Mochammad Hatta ◽  
Rosdiana Natzir ◽  
Veni Hadju ◽  
Yusminah Hala ◽  
...  

Lime (Citrus aurantifolia) is a traditional plant that is widely used as antibacterial. This study to prove the effect of lime peel extract (LPE) on the growth of bacterial colonization of S. Typhi medited by activity of IL-6. True experimental pre-post test design, mice were divided into; LPE 510 mg/kgbw, LPE 750 mg/kgbw, positive and negative control. The examination was carried out 3 times, the 5th day before the intervention, the 10th day after the intervention and the 30th day after maintenance. Intervention LPE for 5 days can decreased the number of S. Typhi colonies, even maintenance for 20 days after the intervention showed no bacterial growth . IL-6 pro-inflammatory cytokine activity increased on examination day 5 after S.Typhi injection and decreased after intervention on day 10, significantly different between pre and post at all groups except negative controls (p=0.15). The speed of decrease in IL-6 levels was greatest at the LPE 750 mg/kgbw (velocity=-5.64%). LPE decreased serum levels of IL-6 and inhibit the growth of S. Typhi colony in mice Balb/c. LPE have potential as antibacterial and anti-inflammatory.


2020 ◽  
Author(s):  
Maria Chiara Sportelli ◽  
Giada Caniglia ◽  
Ruggiero Quarto ◽  
Rosaria Anna Picca ◽  
Antonio Valentini ◽  
...  

&lt;p&gt;Biofilms are considered a major cause of serious health issues in human medicine and food industry, due to their resistance against harsh conditions and pharmacological treatment [1]. Biofilms are defined as three-dimensional structures encasing bacterial communities rooted in extracellular polymeric substances (EPS). These complex systems are strongly influenced by a variety of parameters including biofilm age, external conditions, nutrient deficiency, attack of exogenous agents [2]. Moreover, bacterial colonies may activate survival strategies when subjected to stress such as the presence of antimicrobial agents. Even cannibalistic behavior may occur [3], which involves the secretion of cannibalism toxins inducing the generation of lysed cells providing nutrients.&lt;/p&gt; &lt;p&gt;Several methodologies were developed for or adapted to biofilm formation studies enabling a more comprehensive understanding of biofilm physiology, structure, and composition. This information should facilitate the development of more effective eradication strategies. Infrared spectroscopy in attenuated total reflectance (IR-ATR) mode provides in-situ and close to real time monitoring of biofilm lifecycles providing molecular information on the various stages of biofilm formation. Given the antibiotic resistance of biofilms [4], it is of increasing importance to develop innovative methodologies for the treatment of biofilm-related infections. While our research team has shown the generic utility of antimicrobial nanoparticles (NPs) such as ZnONPs, AgNPs, CuNPs, etc. in the past [5], the current study focuses on AgNPs embedded within fluoropolymer matrices with tunable loading of the NPs. Next to morphological studies by TEM and AFM, detailed XPS investigations revealed the surface chemical composition. In addition, the kinetics of antimicrobial ion release enabled correlating the behavior of the nanocomposite to its swelling properties and 3D modification after immersion in liquids. Biofilm growth and inhibition was studied via AFM, optical microscopy and IR-ATR. The IR analysis of the biofilm allowed collecting molecular information on the biofilm behavior during long-term contact with antimicrobial surfaces. It was demonstrated that bacterial cells may re-colonize on top of dead biomass once the latter is thick enough to prevent direct interaction with the antimicrobial surface. In summary, this study represents an excellent foundation for developing an in depth understanding on the behavior of bacterial colonies and nascent biofilms in contact with surfaces decorated with nanoantimicrobials over extended periods of time. It is anticipated that an improved understanding on the stages of biofilm formation provides insight into the processes governing antimicrobial resistance phenomena. Finally, present antimicrobial material may be a useful strategy against Corona viruses. An outlook to this urging topic will be also presented.&lt;/p&gt; &lt;div&gt; &lt;p&gt;[1] N. Billings et al., Rep. Prog. Phys., 2015, 78, 036601. [2] D.O. Serra et al., MBio., 2013, 4, e00103. [3] C. H&amp;#246;fler et al., Microbiology, 2016, 162, 164. [4] M.C. Sportelli et al., Sci. Rep., 2017, 7, 11870. [5] M.C. Sportelli et al., TrAC, 2016, 84, 131.&lt;/p&gt; &lt;/div&gt;


2020 ◽  
Vol 115 (6) ◽  
pp. 222-229
Author(s):  
Didem Berber ◽  
İpek Türkmenoğlu ◽  
Meral Birbir ◽  
Nüzhet Cenk Sesal

Bacteria forms biofilm to be resistant to antibacterial agents and other unfavorable environment as compared to planktonic bacterial cells. Due to resistance of bacterial biofilms to commonly used antimicrobial agents and adverse effects of these biofilms in different industries, potential natural compounds which can inhibit bacterial biofilms have attracted more attention in recent years. Lichens are known to have unique secondary metabolites with various biological activities including anti-biofilm properties. Therefore, Bacillus toyonensis, Bacillus mojavensis, Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus velezensis, Bacillus cereus, and Bacillus licheniformis, isolated from soak liquor samples in the previous study, were tested for their ability to form biofilm in this study. Biofilm-forming Bacillus species were detected as B. subtilis, B. amyloliquefaciens, and B. velezensis. The anti-biofilm effect of the acetone extracts of Usnea sp. was evaluated at various concentrations against these biofilm-forming isolates. The anti-biofilm effect of acetone extracts of Usnea sp. against B. subtilis and B. amyloliquefaciens was observed at the concentration of 5 µg/mL by inhibition ratios of 62.75% and 72.72%, respectively. In addition, biofilm formation of B. velezensis was inhibited by the treatment with 1.25 µg/mL extracts at a 62.69% inhibition rate. Biofilm formations of B. amyloliquefaciens and B. velezensis were also suppressed by the extracts at varying percentages of inhibition ranging between 10.11-43.69% and 21.25-46.35%, respectively. This study may provide an alternative approach to overcome the biofilm formation and bacterial resistance to the antibacterial agents in the leather industry.


2018 ◽  
Vol 773 ◽  
pp. 328-332
Author(s):  
Supaporn Mala ◽  
Sroisiri Thaweboon ◽  
Pipat Luksamijarukul ◽  
Boonyanit Thaweboon ◽  
Chayaporn Saranpuetti ◽  
...  

Streptococcus mutans is the most prevalent bacterial species isolated from the human oral cavity. Its ability to form biofilms is an important factor in the pathogenesis of dental caries. Thus, the search for new antimicrobial agents, especially from plants, has been intensified. Kaempferia parviflora has been the subject of research for many pharmacological and antimicrobial activities. In this study, we evaluated the effect of ethanolic extract of K. parviflora root (0.46, 0.94, 1.87, 3.75, 7.5, 15, and 30 mg/ml) on S. mutans KPSK2 biofilm formation using crystal violet assay. Cytotoxicity was determined according to 10993-5/2009 on human gingival fibroblast by MTT assay. The results showed that K. parviflora extract could inhibit biofilm formation to approximately 62-82% at the concentrations of 0.46-30 mg/ml. In the case of cytotoxicity, no cytotoxic potential was demonstrated at concentration of £ 7.5 mg/ml of K. parviflora. In conclusion, K. parviflora extract is a potentially useful anti-biofilm agent against caries-associated bacteria and could be used as adjunct to other caries preventive measures.


REAKTOR ◽  
2019 ◽  
Vol 18 (04) ◽  
pp. 235
Author(s):  
Rosalie Purwanto ◽  
Jeni Pabontong ◽  
Ery Susiany Retnoningtyas ◽  
Wenny Irawaty

Kaffir lime peels contain polyphenols as natural antioxidant and antimicrobial agent. The aims of this study were to (1) extract phenolics compounds from kaffir lime peels using water, ethanol 70% and ethanol 96% as the solvent, and (2) assess the antibacterial activity of the extract against Streptococcus mutans which is the main cause of dental caries. Research methodology includes preparation and extraction of polyphenols from kaffir lime peels, preparation of mouthwash based-kaffir lime peels extracts and evaluation the mouthwash ability to inhibit the growth of Streptococcus mutans. The results show water exhibited the best solvent to extract polyphenols among the three solvents. The total phenolics content in the water extract was observed at 11.42±0.48 mg GAE/g, whilst in the two ethanolic extracts were 10.91±0.87 and 8.87±0.53 mg GAE/g for ethanol 70 and 96%, respectively. Consequently, the water-based extract performed the highest antimicrobial activity. The highest inhibition zone was demonstrated by 100% extract of concentration extract variation. Although the inhibition zone of the mouthwash was smaller than the commercial product, the extract has the potential to be developed as a safe mouthwash for long-term usage.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1015
Author(s):  
Kyungsun Kim ◽  
Jeong Nam Kim ◽  
Bum-Soon Lim ◽  
Sug-Joon Ahn

Concerns regarding unbound monomers in dental composites have increased with the increased usage of these materials. This study assessed the biological effects of urethane dimethacrylate (UDMA), a common monomer component of dental composite resins, on the cariogenic properties of Streptococcus mutans. Changes in the growth rate, biofilm formation, interaction with saliva, surface hydrophobicity, adhesion, glucan synthesis, sugar transport, glycolytic profiles, and oxidative- and acid-stress tolerances of S. mutans were evaluated after growing the cells in the presence and absence of UDMA. The results indicated that UDMA promotes the adhesion of S. mutans to the underlying surfaces and extracellular polysaccharide synthesis, leading to enhanced biofilm formation. Furthermore, UDMA reduced the acid tolerance of S. mutans, but enhanced its tolerance to oxidative stress, thus favoring the early stage of biofilm development. UDMA did not significantly affect the viability or planktonic growth of cells, but diminished the ability of S. mutans to metabolize carbohydrates and thus maintain the level of intracellular polysaccharides, although the tendency for sugar transport increased. Notably, UDMA did not significantly alter the interactions of bacterial cells with saliva. This study suggests that UDMA may potentially contribute to the development of secondary caries around UDMA-containing dental materials by prompting biofilm formation, enhancing oxidative tolerance, and modulating carbon flow.


Sign in / Sign up

Export Citation Format

Share Document