Serbuk Biji Asam Jawa (Tamarin Dusindica L) untuk Pengelolaan Limbah Industri Cair Tempe (Studi Kasus Mataram)

2021 ◽  
Vol 7 (2) ◽  
pp. 272-279
Author(s):  
Leny Fitriah ◽  
Dwi Agustini

Most of the tempe industry have not been equipped with a waste water treatment unit. It is usually a water soaked soybeans and soybean excess water is still discharged directly in the into the environment. Liquid waste industrial of tempeh contain high organic materials. One of the process for wastewater treatment is coagulation with the addition of a positively charged polyelectrolyte in tempeh wastewater as negatively charged. One of plants in Indonesia that can be used as an alternative coagulant is tamarind seeds (Tamarindus indica, L).it can be used for wastewater treatment is more economical. The aims of this experiment is to determine the optimum stirring time, optimum pH of the waste and optimum coagulant dosage for treatment of the tempeh wastewater with coagulant tamarind seed powder. The experiment studied were stirring time, the pH of thetempeh wastewater and coagulant dosage to the percentage decrease in turbidity and COD (Chemical Oxygen Demand). The variables in the experiment were stirring time (10,15, 20, 25 and 30 minutes), the pH of the waste (3; 3.5; 4; 4 and 5) and the dosage of tamarind seed powder (100, 300, 500, 700, and 900 mg / L). COD testing methods is closed reflux method by spectrophotometry and turbidity testing using Turbidimeter. The results showed that the with coagulant tamarind seed powder effectively lowered cod levels and the dryness of tempeh liquid industrial waste. The optimum pH obtained is pH 4, optimum stirring time is 25 minutes and the increase in optimum coagulant dose is 500 mg with a percentage decrease in COD levels and noise by 90.57% and 78.94%.  Key words: liquid waste; sour power; turbidity; COD

2014 ◽  
Vol 67 (4) ◽  
Author(s):  
Nor Azimah Ahmad ◽  
Mohd Ariffin Abu Hassan ◽  
Zainura Zainon Noor ◽  
Abdullahi Mohammed Evuti ◽  
Jibrin Mohammed Danlami

Optimum pH and coagulant dosage for chemical precipitation in wastewater treatment plants is conventionally obtained through repeated jar test. In this research, optimization of the performance of polyacrylamide in the treatment of industrial wastewater was carried out using response surface methodology. The individual linear and quadratic effect of coagulant dosage and pH on the degree of removals of nickel, total suspended solids, Chemical Oxygen Demand and turbidity were investigated. The optimum pH and polyacrylamide dosage were found to be 10.5 and 1.6 ml/L respectively and the optimum percentage nickel removal was 96.9%. The model used in predicting the precipitation process gave a good fit with the experimental variables and hence the suitability of response surface methodology for the optimization of polyacrylamide performance.


2021 ◽  
Vol 25 (1) ◽  
pp. 30
Author(s):  
Kadek Diana Harmayani

The Mangusada Regional General Hospital (RSD) as a provider of health facilities certainly produces liquid waste in every operational activity. Wastewater in the Wastewater Treatment Installation (WWTI) RSD Mangusada contains Biological Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), Total Suspended Solid (TSS), ammonia, total coliform, Total Dissolved Solid (TDS), detergent, oil and fat. This study aims to evaluate the performance of the WWTI as well as to determine the content in the wastewater after being treated by the IPAL RSD Mangusada according to the reference quality standards of the Governor of Bali Regulation No.16/2016 and Regulation of the Minister of Environment and Forestry of the Republic of Indonesia Number: P.68/Menlhk/Setjen/Kum.1/8/2016. The wastewater treatment system at RSD Mangusada uses a biological system. The data used in the analysis are secondary data, namely the Bed Occupation Rate (BOR) data in June 2020, the total number of beds, the average discharge of outlets in June 2020 and parameters of the quality and quantity of wastewater in the inlet and outlet of WWTI from January 2020 to July 2020. Based on the results of testing the quality and quantity of wastewater at the WWTI of RSD Mangusada outlet, the content of waste water in the outlet of WWTI is in accordance with the regulatory standards for the reference quality standards. In addition, the effectiveness of the efficiency of the WWTI at RSD Mangusada succeeded in reducing the ammonia content of 92.35%, BOD5 64.03%, COD 63.97%, TSS 67.03%, oil and fat 64.64%, total coliform 76.84%. , and detergent at 76.25%. But the efficiency of the WWTI of RSD Mangusada was not good enough in reducing the TDS content of -3.92%.  


2021 ◽  
Vol 10 (1) ◽  
pp. 139-148
Author(s):  
Rika Favoria Gusa ◽  
Diana Novita Sari ◽  
Fitri Afriani ◽  
Wahri Sunanda ◽  
Yuant Tiandho

During the production of batik cual, thick-colored wastewater is produced. Unfortunately, the wastewater could damage the environment if it is disposed of without specific processing. The Fenton method is an advanced oxidation process (AOPs) that can degrade organic dyes found in liquid waste. In this research, the researchers studied the Fenton mechanism's application to the batik cual wastewater treatment. The Fenton's reagent used was H2O2 with FeSO4.7H2O. Some of the experimental wastewater treatment parameters were the values of biological oxygen demand (BOD), chemical oxygen demand (COD), the degradation efficiency of difficult to decompose organic materials, and the color degradation efficiency in batik cual wastewater. The results show that the Fenton mechanism’s efficiency of removing color from batik cual wastewater is up to 97.8%, COD and BOD removal efficiencies are 76.3% and 75.2%, and the degradation efficiency of difficult to decompose organic matter is 76.8%. Also, the researchers found that the higher amounts of FeSO4.7H2O increase the removal parameters effectiveness. Therefore, the Fenton mechanism can effectively improve the quality of wastewater in batik cual production.


2021 ◽  
Vol 6 (1) ◽  
pp. 1-7
Author(s):  
Eis Sri Hartati ◽  
◽  
Muhammad Hatta Dahlan ◽  
Tuti Indah Sari

Waste containing dyes causes visual pollution and increase the risk of environmental and health issue. The aim of this study was to determine the best operating conditions of jumputan liquid waste treatment using bottom ash batubara and agar wood with variations in feed flow rate (1, 2, and 3 l/min), filtration time (30, 60, 90, and 120 mins), and treatment. The results are compared with the parameters of Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), and pH of clean water quality standards for jumputan industry businesses and/or activities regulated in the Governor’s of Sumatera Selatan Regulation Number 16 year 2005. The initials analysis of jumputan liquid waste before processing showed that jumputan liquid waste did not meet these quality standards, except pH and turbidity levels. In this study, jumputan liquid waste was pretreated using coal bottom ash and activated carbon, then filtered. Biodegradation of jumputan liquid waste by conventional method. The best of BOD, COD, TSS, pH, and the percentage of color rejection in the study were obtained in the treatment of jumputan liquid waste using bottom ash batubara and activated carbon at 120 minutes filtration time and a 1 l/minute feed flow rate namely BOD 5.98 mg/l, COD 15 mg/l, TSS 22.3 mg/l, pH 7.32, color 5 Pt-Co, and 0 NTU turbidity. The filtration with bottom ash coal and agar wood can removed the coloring from dyes.


Irriga ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 671-677
Author(s):  
LIBIANE MARINHO BERNARDINO ◽  
PATRÍCIA DA SILVA COSTA ◽  
VERA LÚCIA ANTUNES DE LIMA ◽  
RENER LUCIANO DE SOUZA FERRAZ

POTENCIAL DE REÚSO DE EFLUENTES TRATADOS PARA IRRIGAÇÃO PERIURBANA NO MUNICÍPIO DE GUARABIRA/PB     LIBIANE MARINHO BERNARDINO1; PATRÍCIA DA SILVA COSTA2; VERA LÚCIA ANTUNES DE LIMA3 E RENER LUCIANO DE SOUZA FERRAZ4.   1 Mestranda em Gestão e Regulação em Recursos Hídricos, Unidade Acadêmica de Tecnologia do Desenvolvimento, UFCG, Rua Luiz Grande, s/n, Frei Damião, CEP 58540-000, Sumé, PB, Brasil, [email protected] 2 Doutoranda em Engenharia Agrícola, Unidade Acadêmica de Engenharia Agrícola, UFCG, Rua Aprigio Veloso, 882, Universitário, CEP 58429-900, Campina Grande, PB, Brasil, [email protected] 3 Profa. Doutora em Engenharia Agrícola, Unidade Acadêmica de Engenharia Agrícola, UFCG, Rua Aprigio Veloso, 882, Universitário, CEP 58429-900, Campina Grande, PB, Brasil, [email protected] 4 Prof. Doutor em Engenharia Agrícola, Unidade Acadêmica de Desenvolvimento Sustentável do Semiárido, UFCG, Rua Luiz Grande, s/n, Frei Damião, CEP 58540-000, Sumé, PB, Brasil, [email protected]     1 RESUMO   A água é um recurso finito que se encontra escasso, o que justifica a busca por gestão e inovação de práticas que a preserve. O objetivo da pesquisa é avaliar o potencial de reúso dos efluentes tratados para irrigação periurbana. Foram levantados dados de uma Estação de Tratamento de Esgotos (ETE), localizada no município de Guarabira, PB, e operada pela Companhia de Água e Esgotos do Estado da Paraíba (CAGEPA), durante o período de janeiro a dezembro de 2019. Analisou-se os seguintes parâmetros físico-químicos e bacteriológicos: Potencial Hidrogeniônico (pH), Condutividade Elétrica (CE), Demanda Bioquímica de Oxigênio (DBO), Demanda Química de Oxigênio (DQO), Sólidos Totais (ST), Oxigênio Dissolvido (OD), Fósforo Total, e Coliformes Termotolerantes. Os dados foram submetidos à análise descritiva e expresso em valores mínimos, máximos e médios. Os indicadores foram satisfatórios para irrigação restrita, porém com a necessidade de tratamento complementar para determinados cultivos. O potencial de reúso   dos efluentes tratados na ETE pode beneficiar uma área de 118,7 ha considerando uma demanda de irrigação de 18.000 m³ ha-1 ano-1, o que demonstra ser um recurso sustentável e que precisa ser regulamentado no Brasil.   Palavras-chave: recursos hídricos, resíduos líquidos, tratamento de água, fertirrigação.     BERNARDINO, L. M.; COSTA, P. S.; LIMA, V. L. A.; FERRAZ, L. R. S. REUSE POTENTIAL OF TREATED EFFLUENTS FOR PERIURBAN IRRIGATION IN THE MUNICIPALITY OF GUARABIRA/PB     2 ABSTRACT   Water is at the center of sustainable development and a finite resource that is in short supply, which justifies the search for management and innovation of practices that preserve it. This research aims to evaluate the potential for reuse of treated effluent for periurban irrigation. Data were collected from a Sewage Treatment Plant (STP), located in the municipality of Guarabira, PB, and operated by the Water and Sewage Company of the State of Paraíba (CAGEPA), during the period from January to December 2019, with the analysis of the following physicochemical and bacteriological parameters: Hipogenic Potential (pH), Electrical Conductivity (CE), Biochemical Oxygen Demand (DBO), Chemical Oxygen Demand (DQO), Total Solids (ST), Dissolved Oxygen (OD), Total Phosphorus, and Thermotolerant Coliforms. The data were submitted to the descriptive analysis and expressed as minimum, maximum and average values. The indicators were satisfactory for restricted irrigation, but with the need for complementary treatment for certain crops. The potential for reuse of the effluents treated in the ETE can benefit an area of 118.7 ha considering an irrigation demand of 18,000 m³ ha-1 year-1, which demonstrates to be a sustainable resource that needs to be regulated in Brazil.   Keywords: Water resources, liquid waste, water treatment, fertigation.


Author(s):  
Laiye Zhu ◽  
Maogang Zhu ◽  
Yanhong He ◽  
Xin Wang ◽  
Wenshu Dong

With the introduction of third generation of nuclear power AP1000, Westinghouse uses the mobile device (a mobile wastewater treatment device 6 units shared) radioactive waste system design concepts. This design not only simplifies the process of nuclear island waste system; saves equipment layout space; improves equipment utilization; while increases the use of new technologies lifetime of the plant and the possibility of flexibility. This paper introduces the first AP1000 unit (Sanmen, Zhejiang Province) by using the advanced mobile device technology and application of wastewater treatment under the condition of the primary coolant source level. At the same time, the paper also discusses the periodic system inspection and the strategy of maintenance. In addition, the paper further expands the application direction of the mobile waste processing aspects, such as: decommissioning of nuclear facilities; enhancing the facility decommissioning radioactive liquid waste purification capability. Another example: After the Fukushima accident, people pay more attention to accident-mitigation-design and hope to accelerate the development of emergency radioactive liquid waste processing devices. Thus, in addition to strengthening the nuclear power plant inherent defense in depth and resistance emergency capability, mobile waste treatment device or combination device special regional settings can be made to improve and enhance the ability to get more diversified emergency response.


2020 ◽  
Vol 27 (2) ◽  
pp. 39
Author(s):  
Atieka Wulandari ◽  
Rossie Wiedya Nusantara ◽  
Muhammad Sofwan Anwari

AbstrakLahan basah buatan adalah sistem yang melibatkan tanaman, tanah, mikroba sebagai pengolahan limbah cair. Penelitian ini bertujuan untuk mengkaji efektifitas sistem lahan basah buatan dalam pengolahan limbah cair rumah sakit X dan mengkaji kemampuan jenis tanaman Canna Indica, Echinodorus palaefolius dan Iris pseudoacorus sebagai biofilter limbah cair rumah sakit X . Lahan basah buatan dibuat menggunakan media pasir, karbon aktif, dan kerikil dalam skala laboratorium. Analisis data menggunakan uji Anova dan Uji BNT dengan penggunaan jenis tanaman sebagai perlakuan biofilter, yaitu Canna Indica, Echinodorus palaefolius plant, Iris pseudoacorus, penggabungan ketiga tanaman, dan tidak ada tanaman sebagai kontrol. Waktu detensi 3, 6, dan 9 hari sebagai perlakuan hari dengan tiga kali ulangan. Parameter utama adalah Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), dan amoniak. Parameter pendukung warna, bau, suhu, dan pH. Lahan basah buatan terbukti efektif dalam pengolahan limbah cair rumah sakit X dan ada perlakuan yang memberikan pengaruh beda nyata terhadap perubahan kualitas air limbah. Hasil penelitian menunjukkan efisiensi penurunan BOD dan COD terjadi pada waktu detensi 6 hari. Variasi waktu berpengaruh terhadap penurunan konsentrasi BOD dan COD. Penggabungan ketiga tanaman (C. Indica, E. palaefolius dan I. pseudoacorus) terbukti efektif sebagai biofilter dalam penurunan parameter pH (11,2%) dan warna (27,4%), serta tanaman Echinodorus palaefolius terbukti efektif sebagai biofilter dalam penurunan parameter amoniak (34%), namun pengggunaan tanaman (biofilter) dalam lahan basah buatan tidak terbukti efektif pada penurunan BOD, COD, dan suhu. Hasil penelitian ini telah memenuhi persyaratan yang ditetapkan oleh Permen KLHK No: P. 68/Menlhk/Setjen/Kum.1/8/2016 tentang Baku mutu air Limbah domestik.AbstractAn artificial wetland is a system which involves plants, soil, and microbes in the wastewater treatment. This research aims to examine the effectiveness of artificial wetland to be used for the hospital’s wastewater treatment. It also reviews the role of Canna Indica, Echinodorus palaefolius, and Iris pseudoacorus to serve as biofilters of the hospital’s wastewater. The artificial wetland is made of sand, active carbon, and gravels in lab-scale amount. The data was analysed by using Anova test and BNT test. The analysis involved several types of plants serving as a biofilter treatment, namely Canna Indica, Echinodurus palaefolius, Iris pseudoacorus, and the combination of these three plants. None served as a control plant. The detention times were 3, 6, and 9 days compounded with three-time repetitions. The main parameters were Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and amoniak. Supporing parameters included colour, odor, temperature, and pH. The artificial wetland was considered effective in the hospital’s wastewater treatment. The results also documented that some treatments had a significantly different effect towards the change of wastewater quality. The research indicated that the efficiency of BOD’s and COD’s decline occured at 6 days of detention. The variety of time affected the concetration decline of BOD and COD. The combination of three plants (E. palaefolius, I. pseudoacorus, and C. Indica) was proven effective as a biofilter which reduces pH parameter (11,2%) and colour parameter (27,4%). In addition, The Echinodorus palaefolius plant was reported effective to reduce amoniak parameter (34%). However, the use of plants (biofilter) in the artificial wetland was not effective towards the decline of BOD, COD, and temperature. The results of this research therefore have met the requirement stipulated by the Goverment regulation of KLHK (Ministry of Environment and Forestry) No : P.68/Menlhk/Setjen/Kum.1/8/2016 on the quality standards of the domestic wastewater.


2013 ◽  
Vol 726-731 ◽  
pp. 902-906
Author(s):  
Zhao Du ◽  
Bin Guo ◽  
Aertuke Aisha ◽  
Ai Ling Ren

With portable gas chromatography - mass spectrometry (GC - MS) each unit tested penicillin wastewater treatment system of volatile organic compounds (VOCs) from gas collection pipe. The results show that there are 29 pollutants in gas, including sulfur-containing compounds (90.37%). Large volume concentration H2S (383 ppm), isopropyl mercaptan (30,432 ppb) and acetone (16,024 ppb); H2S (766,000 times), isopropyl mercaptan (40576 times), methyl mercaptan (150 times) beyond their olfactory threshold; H2S (383 times) beyond the TWA threshold. Each unit stench in the sum of the pollutant concentration is range of 47 ~ 2103 ppm. In waste water treatment system, anaerobic treatment unit stench is highest.


Lontara ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 89-95
Author(s):  
Novi Poni Harwani ◽  
Sartika Fathir Rahman ◽  
Siti Maifa Diapati

Tofu industrial liquid waste contains high organic matter, if it is discharged into the environment without being processed first, it will have a negative impact in the form of environmental pollution. Currently, most of the tofu industry is still a small household scale industry, for example in Bara-baraya one of the tofu industries is not equipped with a wastewater treatment unit. The Bara-baraya tofu industry is located right in the middle of a residential area, so this can cause disturbance to the surrounding environment. This study aims to determine the quality of the tofu industrial wastewater in the Bara-Baraya Timur Village, Makassar City in terms of pH, BOD, COD, and TSS parameters. The type of research used is observational research with a descriptive approach. The method of examining samples from the parameters of BOD, COD, TSS and pH in the tofu industrial wastewater refers to the SNI for water quality testing methods and is examined at the Makassar Health Laboratory Center. The results of the inspection of the quality of tofu waste water compared to the Minister of Environment Regulation No. 5/2014 are the pH parameter 3.85 (not eligible), COD parameter 499 mg/L (not eligible), TSS parameter 4.777.50 mg/L (not eligible), and BOD parameters 1.771.88 mg/L (not eligible). The conclusion in this study is the quality of tofu wastewater in waste samples that have not undergone treatment at the wastewater treatment plant (IPAL) located in the tofu industry located in RW 4, Bara-Baraya Village, Makassar City, does not meet the requirements and exceeds the quality standards that have been set. determined by the government so that it can cause pollution to the surrounding environment.


2021 ◽  
Vol 10 (2) ◽  
pp. 324
Author(s):  
Agustin Dewi ◽  
Iva Rustanti Eri ◽  
Hermiyanti Pratiwi ◽  
Nerawati Diana A.T ◽  
Narwati Narwati

The batik traditional industries in East Java, Indonesia generally not have a proper wastewater treatment plant yet, so liquid waste directly discharge into the river. Batik wastewater generally have a dark color, which derived from the coloring of naphthol with number of suspended solids greater than 100 mg/L and color concentration more than 250 Pt.Co. Tamarind seed extract is known to contain natural polyelectrolytes active group, which had function as bio-coagulant. The research objective was to analyze the application of tamarind seed extract as bio-coagulant in wastewater treatment of the Batik traditional industries, by reducing suspended solids levels and color of wastewater. The research design used pretest and posttest control group design with variations of bio-coagulant doses of 10ml/L, 30ml/L, and 50ml/L, and analyzed using the Two Way Anova Test. The results showed that the level of suspended solids in wastewater before treatment averaged 291mg/L, and the average color content was 593 Pt-Co, so it did not meet the quality standards of the Governor of East Java No 72/2013. For the highest reduction in suspended solids levels at a dose of 10ml/L reduced up to 95.1% and the highest decrease in color levels at a dose of 50ml/L, reduced up to 87.8%. Traditional batik wastewater treatment, which used a coagulation-flocculation process with bio-coagulant extract of tamarind seeds could reduce levels of suspended solids and colors, in order to meet the specified quality standards.


Sign in / Sign up

Export Citation Format

Share Document