scholarly journals Nanemulsions of foodstuffs and their nutritiological and valleological characteristics

2021 ◽  
Vol 25 (3) ◽  
pp. 389-393
Author(s):  
O. P. Maidebura ◽  
V. V. Hnatyuk ◽  
A. S. Romaniv

Annotation. The use of nanotechnology in the medical, food, pharmaceutical, biotechnology industries today is an important scientific progress and valuable human heritage. Nanoemulsion technology is an ideal method for the manufacture of encapsulating systems for functional compounds, as it prevents their biotechnological biodegradation and improves their functional availability in the cells of the body. The aim of the article is a scientific-theoretical and practical review of the nutritional and valeological properties of nanoemulsions, their use for encapsulation of various nutraceuticals, namely fat-soluble vitamin D. The in vitro experiment was performed using Franz diffusion cells to study the release of bioactive compounds from nanocarriers. The cytotoxicity of nanoemulsions was investigated by analyzing the proliferation of thiazolyl blue tetrazolium bromide (TTB) cells and nasal epithelial cells as an “in vitro” model. The article provides to characterize the nutritional and valeological properties of nanoemulsions and to experimentally investigate hydrogels based on nanoemulsions as biocarriers of vitaminized compounds. During the study, low- and high-energy nanoemulsions were created, which were used for encapsulation of vitamin D3 and biologically active supplement - curcumin. Loaded nanoemulsions are added to homopolymer and copolymer hydrogels based on polysaccharides and their combinations. Both nanoemulsions and hydrogels are structurally characterized to evaluate the effect of the composition on the emulsification process by their properties. The cytotoxic effect of nanoemulsions "in vitro" on the epithelium of nasal cells, which had a positive therapeutic effect, was studied. In the future, further exploration and research will investigate the use of nanoemulsions as biocarriers for other vitamins and bioactive substances.

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2464
Author(s):  
Sotiria Demisli ◽  
Evgenia Mitsou ◽  
Vasiliki Pletsa ◽  
Aristotelis Xenakis ◽  
Vassiliki Papadimitriou

Biocompatible nanoemulsions and nanoemulsion-based hydrogels were formulated for the encapsulation and delivery of vitamin D3 and curcumin. The aforementioned systems were structurally studied applying dynamic light scattering (DLS), electron paramagnetic resonance (EPR) spectroscopy and viscometry. In vitro studies were conducted using Franz diffusion cells to investigate the release of the bioactive compounds from the nanocarriers. The cytotoxicity of the nanoemulsions was investigated using the thiazolyl blue tetrazolium bromide (MTT) cell proliferation assay and RPMI 2650 nasal epithelial cells as in vitro model. DLS measurements showed that vitamin D3 and curcumin addition in the dispersed phase of the nanoemulsions caused an increase in the size of the oil droplets from 78.6 ± 0.2 nm to 83.6 ± 0.3 nm and from 78.6 ± 0.2 nm to 165.6 ± 1.0 nm, respectively. Loaded nanoemulsions, in both cases, were stable for 60 days of storage at 25 °C. EPR spectroscopy revealed participation of vitamin D3 and curcumin in the surfactants monolayer. In vitro release rates of both lipophilic compounds from the nanoemulsions were comparable to the corresponding ones from the nanoemulsion-based hydrogels. The developed o/w nanoemulsions did not exhibit cytotoxic effect up to the concentration threshold of 1 mg/mL in the cell culture medium.


2019 ◽  
Vol 7 (13) ◽  
pp. 2079-2083
Author(s):  
Liudmila Ivanovna Babaskina ◽  
Tatiana Mikhailovna Litvinova ◽  
Dmitrii Vladimirovich Babaskin ◽  
Olga Valerevna Krylova

BACKGROUND: The scientific substantiation for the selection of therapeutically significant dosage of phytocomplex in the dosage form for phonophoresis, control over the delivery of active substances into the body, and what affects this process require the study of the kinetics of phytocomplex flavonoids delivery during phonophoresis. AIM: The aim was to study the possibilities of controlling the process of transdermal delivery of phytocomplex active substances (flavonoids) during phonophoresis in vitro model experiments. METHODS: Working compositions with different concentrations of phytocomplex for phonophoresis were used. The content of flavonoids in the compositions was determined using the spectrophotometric method and was calculated equivalent to quercetin, the flavonoid prevailing in the phytocomplex. The study of the kinetics of flavonoids delivery from working compositions was carried out using Franz diffusion cells and Carbosyl-P membranes. The authors determined the main parameters of the process and established the dependence of the delivery rate of flavonoids on their initial concentration in the working composition. The authors studied the effect of dimethyl sulfoxide and the base-forming substances of the working composition on the kinetics of phytocomplex flavonoid delivery during phonophoresis. RESULTS: The authors recorded an increase in the rate of delivery of the active substances from working compositions containing dimethyl sulfoxide into the model medium by almost 1.5-2 times during the first ten minutes of the experiment (approximate duration of the phonophoresis procedure). The authors proposed technological techniques for improvement of the phonophoresis method for the phytocomplex. The possibilities of control over the process of transdermal delivery of the phytocomplex active ingredients during phonophoresis in vitro model experiments were shown. CONCLUSION: The obtained results provide information for further pharmacological studies of the nature and mechanism of the effect of phytocomplex flavonoids during phonophoresis in the rehabilitation of patients with osteoarthrosis.


2018 ◽  
Vol 51 ◽  
pp. 255-260
Author(s):  
P. A. Trotskiy

Implementation of biotechnological process in livestock should be considered not only in terms of selection process intensification (obtain of embryos in vitro, their transplantation) and to a greater extent as development of effective methods of freezing and long storage of mammalian cells, including ova and embryos. Application of biotechnology in livestock breeding increases rate of genetic progress, preservation of gene pool of breeds via banks of sperm, embryos and cryobank of oocytes, obtaining and regulation of progeny of the desired sex, providing genetic evaluation of gametes and embryos, and it will enable to use genetic potential of animals after culling by age, replicate and create new genotypes with desired properties repeatedly. Solution to this problem is to improve medium and conditions of gametes and embryos freezing. Although the overall development of cryopreservation method is through simplification of the equilibration and vitrification solutions which would be able to ensure the full development frozen-thawed gametes. Addition of biologically active substances to the solution for cryopreservation contributes to protection of gametes during freezing and thawing, and determination of the consistent patterns of these substances will improve procedures of frozen-thawed oocyte cultivation outside the body. So it is necessary to deepen the fundamental research on the mechanisms of formation of a mature ovum of cows obtained from frozen-thawed oocytes to obtain embryos. The aim of the research is to conduct comparative analysis of different biologically active substances in equilibration and vitrification solutions at cryopreservation of oocyte-cumulus complexes of cows. Material and methods of the research. The objects of experimental studies were oocyte-cumulus complexes of black-and-white cows. The oocytes with homogeneous fine-grained ooplasm, undamaged pellucid zone, thick or partially loosened cumulus were used for freezing. The gametes of cows were treated by equilibration solution before freezing and then were transferred into vitrification solution. All the equilibration (10% glycerol + 20% propanediol) and vitrification (25% glycerol + 25% propanediol) solutions for cryopreservation of cows’ oocyte-cumulus complexes were prepared in Dulbecco phosphatebuffered saline with addition of 20% fetal serum of cows, 1х10-4 M unithiol, 1х10-6 M acetylcholine and without addition of bioactive substances. The research on adding some biologically active substances (fetal serum of cows – version A, unithiol – version B, acetylcholine – version C, without addition of biologically active substances – version D and not frozen cells of the control group (K)) in equilibration and vitrification solutions at freezing the oocyte-cumulus complexes of cows was carried out. It was found by the results of experimental studies that introduction of the above-mentioned components into the equilibration solution for freezing cows’ oocyte-cumulus complexes increased their cryoresistance, as evidenced by increasing indicator of maturation of frozen-thawed gametes outside the body to metaphase-2 of meiosis after 27-hour cultivation by 5,4-23,0% and decreasing indicator of number of oocytes with chromosomal abnormalities by 2,9-15,3%. The introduction of biologically active substances into the vitrification solution and subsequent cultivation during 27 hours after freezing and thawing cows’ oocyte-cumulus complexes showed that the indicator of maturation of frozen-thawed gametes outside the body to metaphase-2 of meiosis increased by 3,9-16,4% and the indicator of number of oocytes with chromosomal abnormalities decreased by 2,9-8,4%. Comparative analysis of the results of in vitro fertilization of cows’ frozen-thawed ova which were frozen using fetal serum of cows (version A) and without it (version - B) has shown a positive effect of adding it to equilibration and vitrification medium at freezing gametes of cows; it led to increase of obtaining bovine embryos in vitro by 11,5%. Thus, the analysis of experimental results showed different efficiency of using fetal serum of cows, unithiol, acetylcholine in the equilibration solution for freezing cows’ oocyte-cumulus complexes. The advantage of using these biologically active substances in the vitrification solution for cryopreservation of cow’s gametes by the indicator of maturation of frozen-thawed oocyte-cumulus complexes outside the body to metaphase-2 of meiosis wasn’t established. Conclusions. Introduction of fetal serum into cryopreservation solution increases cryoresistance of cow’s oocytes to cooling leading to increasing the indicator of the matured frozen-thawed gametes outside the body to metaphase-2 of meiosis by 23,0% and the obtained bovine embryos in vitro by 11,5%.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3579
Author(s):  
Svetlana A. Popova ◽  
Evgenia V. Pavlova ◽  
Oksana G. Shevchenko ◽  
Irina Yu. Chukicheva ◽  
Aleksandr V. Kutchin

The pyrazoline ring is defined as a “privileged structure” in medicinal chemistry. A variety of pharmacological properties of pyrazolines is associated with the nature and position of various substituents, which is especially evident in diarylpyrazolines. Compounds with a chalcone fragment show a wide range of biological properties as well as high reactivity which is primarily due to the presence of an α, β-unsaturated carbonyl system. At the same time, bicyclic monoterpenoids deserve special attention as a source of a key structural block or as one of the pharmacophore components of biologically active molecules. A series of new diarylpyrazoline derivatives based on isobornylchalcones with different substitutes (MeO, Hal, NO2, N(Me)2) was synthesized. Antioxidant properties of the obtained compounds were comparatively evaluated using in vitro model Fe2+/ascorbate-initiated lipid peroxidation in the substrate containing brain lipids of laboratory mice. It was demonstrated that the combination of the electron-donating group in the para-position of ring B and OH-group in the ring A in the structure of chalcone fragment provides significant antioxidant activity of synthesized diarylpyrazoline derivatives.


2000 ◽  
Vol 84 (S1) ◽  
pp. 59-68 ◽  
Author(s):  
Eckhard Schlimme ◽  
D. Martin ◽  
H. Meisel

Nucleotides, nucleosides and nucleobases belong to the non-protein-nitrogen (NPN) fraction of milk. The largest amounts of ribonucleosides and ribonucleotides – ribose forms only were considered in this review – were measured directly after parturition in bovine milk and other ruminants as well as in the milk of humans. Generally, concentrations of most of the nucleos(t)ides tend to decrease gradually with advancing lactation period or nursing time. The species-specific pattern of these minor constituents in milk from different mammals is a remarkable property and confirms, at least, the specific physiological impact of these minor compounds in early life. The physiological capacity of these compounds in milk is given by the total potentially available nucleosides. The main dietary sources of nucleos(t)ides are nucleoproteins and nucleic acids which are converted in the course of intestinal digestion into nucleosides and nucleobases the preferred forms for absorption in the intestine. Thus, nucleosides and nucleobases are suggested to be the acting components of dietary and/or supplemented nucleic acid-related compounds in the gut. They are used by the body as exogenous trophochemical sources and can be important for optimal metabolic functions. Up to 15 % of the total daily need for a breast-fed infant was calculated to come from this dietary source. Concerning their biological role they not only act as metabolites but are also involved as bioactive substances in the regulation of body functions. Dietary nucleotides affect immune modulation, e.g. they enhance antibody responses of infants as shown by a study with more than 300 full-term healthy infants. Dietary nucleos(t)ides are found to contribute to iron absorption in the gut and to influence desaturation and elongation rates in fatty acid synthesis, in particular long-chain polyunsaturated fatty acids in early stages of life. Thein vitromodulation of cell proliferation and apoptosis has been described by ribonucleosides, in particular by modified components using human cell culture models. Due to the bio- and trophochemical properties of dietary nucleos(t)ides, the European Commission has allowed the use of supplementation with specific ribonucleotides in the manufacture of infant and follow-on formula. From the technochemical point of view, the ribonucleoside pattern is influenced by thermal treatment of milk. In addition ribonucleosides are useful indicators for quantifying adulterations of milk and milk products.


Author(s):  
Zeinab El Rashed ◽  
Hala Khalife ◽  
Adriana Voci ◽  
Elena Grasselli ◽  
Laura Canesi ◽  
...  

Non Alcoholic Fatty Liver Disease (NAFLD) is characterised by fat accumulation in hepatocytes in the form of triacyglycerols (TAGs) within cytosolic lipid droplets. Fucoidans (FUs) are biologically active polysaccharides usually isolated from brown marine algae, but recently identified also in terrestrial plants. In this study, we aimed to investigate the anti-oxidant and anti-steatotic effects of FUs purified from C. compressa, F. hermonis, and E. globulus. To this aim, we used a validated NAFLD in vitro model consisting of rat hepatoma FaO cells exposed to an oleate/palmitate mixture. Such a model is suitable for rapid investigation of direct effects of natural and artificial compounds, together with satisfying the strategy of 3Rs for laboratory use of animals. Our results indicated that all FUs display anti-oxidant and anti-steatotic activities. Steatotic FaO cells may be employed to further study the biological effects of FUs.


1989 ◽  
Vol 12 (8) ◽  
pp. 505-508 ◽  
Author(s):  
G. Passavanti ◽  
E. Buongiorno ◽  
G. De Fino ◽  
D. Fumarola ◽  
P. Coratelli

This study of 20 endotoxemic patients submitted to 70 hemodialyses (HD) found a reduction of the pre-HD limulus amebocyte lysate (LAL) positivity in 50 HD (71%), without appreciable differences in terms of effectiveness between cuprophan and AN 69 membranes. To define the mechanisms responsible for the reduction in LAL positivity during HD, the membranes were used in two in vitro studies, the first of which showed that the LAL positivity of blood containing lipopolysaccharide (LPS), submitted to hemofiltration (HF) for 300 min, remained unchanged and the ultrafiltrate remained constantly LAL negative. These results suggest that the reduction in LAL positivity observed in HD in vivo, an expression of reduced endotoxemia, cannot be attributed either to the filtration of the LPS as such or to its fragmentation following blood-membrane interaction into theoretically less filtrable molecules or to mechanisms of LPS adsorption on the membrane. The in vivo reduction of LAL positivity is more likely due to removal of the filtrable endotoxin fragments already released in the body, like lipid A, the biologically active component of LPS, known to react to LAL. This hypothesis was borne out by the second in vitro study, where the LAL positivity of blood containing lipid A, treated by HF for 80 min, gradually decreased, and dialytic permeability to lipid A was confirmed by the appearance of LAL positivity in the ultrafiltrate.


2019 ◽  
Vol 65 (4) ◽  
pp. 316-323
Author(s):  
T.V. Sirota

The superoxide-generating reaction of adrenaline autoxidation in an alkaline medium, used in vitro to identify the antioxidant properties of various compounds, simulates the complex multistep process of quinoid oxidation of catecholamines (CA) in the body. Sulfur-containing cysteine (Cys) and reduced glutathione (GSH), as well as oxidized glutathione (GSSG), have been shown to inhibit this process. The studied substances were considered as inhibitors of quinoid oxidation and are evaluated as antioxidants. The IC50 values for Cys and GSH were close to 7.5 mM. Inhibition by GSSG was weaker; represented approximately 50-70% of Cys and GSH. Other sulfur-containing compounds that differ in chemical structure, the amino acids taurine and methionine were ineffective. The interest in this model and the search for effective compounds acting on this reaction is associated with one of the mechanisms of the etiopathogenesis of Parkinson's disease (PD) discussed in the literature, which occurs when the biochemical transformations of dopamine CA and its quinoid oxidation process are violated. Cys, GSH and GSSG in the model system inhibit quinoid oxidation of adrenaline, as a result of which the formation of superoxide (O2 ·-) is also inhibited. Experiments with the superoxide-generating enzymatic reaction xanthine xanthioxidase, the chemistry of which is different and not related to formation of quinoid metabolites, showed that the studied substances did not inhibit O2 ·- formation in this model. Thus, it was established that the biologically active sulfur-containing compounds Cys, GSH and GSSG are specific inhibitors of quinoid oxidation of CA, and are likely to be able to play the role of a neuroprotector. It is proposed to use these compounds in the treatment and prevention of PD by activating their biosynthesis in the body.


Reproduction ◽  
2003 ◽  
pp. 509-517 ◽  
Author(s):  
A Fazeli ◽  
RM Elliott ◽  
AE Duncan ◽  
A Moore ◽  
PF Watson ◽  
...  

Oviductal apical plasma membrane fractions have been successfully used to provide an in vitro model to study the role of direct membrane contact in sperm-oviduct interactions. Apical plasma membrane preparations from pig oviductal tissues show a dose-response in their ability to maintain boar sperm viability in vitro. Membrane preparations obtained from other tissues (lung and duodenum) are incapable of maintaining boar sperm viability to the same extent as oviductal tissue. The present study examined the validity of two hypotheses that arise from current knowledge of sperm-oviduct interactions, namely, that (i) apical plasma membranes prepared from ampullar regions of the oviduct are less effective than those from isthmus regions, and (ii) sperm survival is more effective in apical plasma membrane preparations derived from follicular phase oviducts than those derived from luteal phase oviducts. Both hypotheses were proved false. The nature of the active component(s) in the oviductal apical plasma membrane fractions was further investigated. Heat treatment (100 degrees C for 20 min) diminished the capacity of membranes to support boar sperm viability. Furthermore, a soluble salt-extracted fraction obtained from oviductal apical plasma membrane preparations was biologically active and supported boar sperm viability in vitro. This may indicate that the active factor(s) responsible for the maintenance of boar sperm viability is not an integral part of oviductal membranes and is peripherally bound to these membranes.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1507 ◽  
Author(s):  
Sylwia Borowska ◽  
Michał Tomczyk ◽  
Jakub W. Strawa ◽  
Małgorzata M. Brzóska

Previously, we have revealed that prolonged administration of a polyphenol-rich 0.1% extract from the berries of Aronia melanocarpa L. (chokeberries) alone and under chronic exposure to cadmium influences the body status of zinc (Zn) and copper (Cu). The aim of this study was to evaluate, in an in vitro model, the chelating properties of the extract (0.05% and 0.1%) and its main polyphenolic ingredients (cyanidin 3-O-β-galactoside, chlorogenic acid, neochlorogenic acid, (+)-catechin, (−)-epicatechin, quercetin, and kaempferol) regarding divalent ions of Zn (Zn2+) and Cu (Cu2+) at pH reflecting physiological conditions at the gastrointestinal tract such as 2 (empty stomach), 5.5 (full stomach), and 8 (duodenum). The study has revealed that the extract from Aronia berries, as well as cyanidin 3-O-β-galactoside and quercetin, can bind Zn2+ and Cu2+, but only at pH 5.5. Moreover, kaempferol was able to chelate Zn2+ at pH 5.5; however, this ability was weaker than those of cyanidin 3-O-β-galactoside and quercetin. The ability of the chokeberry extract to chelate Zn2+ and Cu2+ may be explained, at least partially, by the presence of polyphenols such as anthocyanin derivatives of cyanidin and quercetin. The findings seem to suggest that Aronia products, used as supplements of a diet, should be consumed before meals, and particular attention should be paid to adequate intake of Zn and Cu under prolonged consumption of these products to avoid deficiency of both bioelements in the body due to their complexation by chokeberry ingredients in the lumen of the gastrointestinal tract.


Sign in / Sign up

Export Citation Format

Share Document