On-Die Parametric Analysis of SRAM

Author(s):  
Benjamin M. Mauck ◽  
Vishnumohan Ravichandran ◽  
Usman Azeez Mughal

Abstract Parametric analysis of microprocessor SRAM through special design for test features (DFT) is used extensively by fault isolation and failure analysis engineers to find and characterize defects. While regular raster and special cache patterns (i.e. weak-write test mode) detect many stuck-at faults, a parametric analysis is needed to identify which defect mechanism is the cause of a cache failure. Pico-probing is the most common method of parametric analysis on SRAM cells, but is becoming increasingly difficult on smaller geometries. These curves can also be taken non-destructively by muxing any bitline (BL) and bitline_bar (BL#) of an internal cache to an I/O pin and sweeping these pins with an external PMU (a test mode known as low yield analysis, or LYA). Unfortunately, a growing amount of leakage on each new process is distorting these LYA testmode I-V curves, making it increasingly difficult to find and differentiate defects. The goal of this paper is to discuss the simulation and silicon results of a concept On-Die LYA (ODLYA) circuit implemented in a 65 nm CMOS process technology. ODLYA is used to curve-trace individual transistors within an SRAM cell and read out results in an automated fashion. Taking measurements on-die eliminates interconnect-dominated IR drop and leakage distortion from several levels of multiplexing. The proposed implementation enables non-destructive high-speed parametric analysis with less dependency on growing cache sizes, number of cores, and scaling process technologies.

2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 7-10 ◽  
Author(s):  
Subhashree Rath ◽  
Siba Kumar Panda

Static random access memory (SRAM) is an important component of embedded cache memory of handheld digital devices. SRAM has become major data storage device due to its large storage density and less time to access. Exponential growth of low power digital devices has raised the demand of low voltage low power SRAM. This paper presents design and implementation of 6T SRAM cell in 180 nm, 90 nm and 45 nm standard CMOS process technology. The simulation has been done in Cadence Virtuoso environment. The performance analysis of SRAM cell has been evaluated in terms of delay, power and static noise margin (SNM).


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2260
Author(s):  
Khuram Shehzad ◽  
Deeksha Verma ◽  
Danial Khan ◽  
Qurat Ul Ain ◽  
Muhammad Basim ◽  
...  

A low power 12-bit, 20 MS/s asynchronously controlled successive approximation register (SAR) analog-to-digital converter (ADC) to be used in wireless access for vehicular environment (WAVE) intelligent transportation system (ITS) sensor based application is presented in this paper. To optimize the architecture with respect to power consumption and performance, several techniques are proposed. A switching method which employs the common mode charge recovery (CMCR) switching process is presented for capacitive digital-to-analog converter (CDAC) part to lower the switching energy. The switching technique proposed in our work consumes 56.3% less energy in comparison with conventional CMCR switching method. For high speed operation with low power consumption and to overcome the kick back issue in the comparator part, a mutated dynamic-latch comparator with cascode is implemented. In addition, to optimize the flexibility relating to the performance of logic part, an asynchronous topology is employed. The structure is fabricated in 65 nm CMOS process technology with an active area of 0.14 mm2. With a sampling frequency of 20 MS/s, the proposed architecture attains signal-to-noise distortion ratio (SNDR) of 65.44 dB at Nyquist frequency while consuming only 472.2 µW with 1 V power supply.


VLSI technology become one of the most significant and demandable because of the characteristics like device portability, device size, large amount of features, expenditure, consistency, rapidity and many others. Multipliers and Adders place an important role in various digital systems such as computers, process controllers and signal processors in order to achieve high speed and low power. Two input XOR/XNOR gate and 2:1 multiplexer modules are used to design the Hybrid Full adders. The XOR/XNOR gate is the key punter of power included in the Full adder cell. However this circuit increases the delay, area and critical path delay. Hence, the optimum design of the XOR/XNOR is required to reduce the power consumption of the Full adder Cell. So a 6 New Hybrid Full adder circuits are proposed based on the Novel Full-Swing XOR/XNOR gates and a New Gate Diffusion Input (GDI) design of Full adder with high-swing outputs. The speed, power consumption, power delay product and driving capability are the merits of the each proposed circuits. This circuit simulation was carried used cadence virtuoso EDA tool. The simulation results based on the 90nm CMOS process technology model.


2016 ◽  
Vol 25 (10) ◽  
pp. 1630006
Author(s):  
Sungkyung Park ◽  
Chester Sungchung Park

Frequency dividers are used in frequency synthesizers to generate specific frequencies or clock (CK) waveforms. As consequences of their operating principles, frequency dividers often produce output waveforms that exhibit duty cycles other than 50%. However, some circuits and systems, including dynamic memory systems and data converters, which accommodate frequency divider outputs, may need symmetric or 50%-duty-cycle clock waveforms to optimize timing margins or to obtain sufficient timing reliability. In this review paper, design principles and methods are studied to produce symmetric waveforms for the in-phase (I) and quadrature (Q) outputs of high-speed CMOS frequency dividers with design considerations from the logic gate level down to the transistor level in terms of speed, reliability, noise, and latency. A compact and robust multi-gigahertz frequency divider with moduli 12, 14, and 16 to provide I and Q outputs with 50% duty cycle is proposed and designed using a 90-nm digital CMOS process technology with 1.2-V supply.


Author(s):  
Mohd Tafir Mustaffa

Comparator is one of the main blocks that play a vital task in the performance of analog to digital converters (ADC) in all modern technology devices. High-speed devices with low voltage and low power are considered essential for industrial applications. The design of a low-power comparator with high speed is required to accomplish the requirements mostly in electronic devices that are necessary for high-speed ADCs. However, a high-speed device that leads the scaling down of CMOS process technology will consume more power. Thus, power reduction techniques such as multi-threshold super cut-off stack (MTSCStack), dual-threshold transistor stacking (DTTS), a bulk-driven, and a bulk-driven differential pair were studied in this work. This study aims to find and build the combination of these techniques to produce a comparator that can operate in low power without compromising existing performance using the 0.13-µm CMOS process. A comparator with a combination of MTSCStack, DTTS, and NMOS bulk-driven differential pair shows the most promising result of 6.29 µW for static power, 17.15 µW for dynamic power, and 23.44 µW for total power.


Author(s):  
G. NARAYANA MURTHY ◽  
R. TRINATH

Carry Select Adder (CSLA) is one of the fastest adders use in many data-processing processors to perform fast arithmetic functions. From the structure of the CSLA, it is clear that there is scope for reducing the area and power consumption in the CSLA. This work uses a simple and efficient gate-level modification to significantly reduce the area and power of the CSLA. Based on this modification 8-, 16-, 32-, and 64-b square-root CSLA (SQRT CSLA) architecture have been developed and compared with the regular SQRT CSLA architecture. The proposed design has reduced area and power as compared with the regular SQRT CSLA with only a slight increase in the delay. This work evaluates the performance of the proposed designs in terms of delay, area, power, and their products by hand with logical effort and through custom design and layout in 0.18- m CMOS process technology. The results analysis shows that the proposed CSLA structure is better than the regular SQRT CSLA.


2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Abdul Kadir Kureshi ◽  
Mohd. Hasan

In nanoscale regime as the CMOS process technology continues to scale, the standard copper (Cu) interconnect will become a major hurdle for onchip communication due to high resistivity and electromigration. This paper presents the comprehensive evaluation of mixed CNT bundle interconnects and investigates their prospects as a low power high-speed interconnect for future nanoscale-integrated circuits. The performance of mixed CNT bundle interconnect is examined with carbon nanotube field effect transistor (CNFET) as a driver and compared with the traditional interconnect, that is, CMOS driver on Cu interconnect. All HSPICE simulations are carried out at operating frequency of 1 GHz and it is found that mixed CNT bundle interconnects with CNFET as the driver can potentially provide a substantial delay reduction over traditional interconnects implemented at 32 nm process technology. Similarly, the CNFET driver with mixed CNT bundle as interconnect is more energy efficient than the traditional interconnect at all supply voltages (VDD) from 0.9 V to 0.3 V.


Sign in / Sign up

Export Citation Format

Share Document