Ambient Temperature Thermally Induced Voltage Alteration for Identification of Defects in Superconducting Electronics

Author(s):  
Mark W. Jenkins ◽  
Paiboon Tangyunyong ◽  
Nancy A. Missert ◽  
Alejandro A. Pimentel ◽  
Igor Vernik ◽  
...  

Abstract As research in superconducting electronics matures, it is necessary to have failure analysis techniques to identify parameters that impact yield and failure modes in the fabricated product. However, there has been significant skepticism regarding the ability of laser-based failure analysis techniques to detect defects at room temperature in superconducting electronics designed to operate at cryogenic temperatures. In this paper, we describe preliminary data showing the use of Thermally Induced Voltage Alteration (TIVA) [1] at ambient temperature to locate defects in known defective circuits fabricated using state-of-the-art techniques for superconducting electronics.

Author(s):  
W.Y. Cheng ◽  
T.Y. Chiu ◽  
Jon C. Lee ◽  
J.Y. Chiou

Abstract Emission microscopy have been used for failure analysis (FA) defect isolation. But for advanced products, the working voltage of chip is getting smaller, thus many emission spots from normal transistors will be observed, which indeed affects the judgment on the emission spots from killer defects and increases the FA difficulty. Laser scanning microscope (LSM)-based techniques have been powerful defect isolation methods for many years. In this study, Checkpoint Infrascan 200TD, a laser-based tool, is used to perform defect localization. Here, thermally induced voltage alteration and optical beam induced resistance change are used to get defect locations. The study demonstrates three FA cases with 80nm/90nm technologies; metal direct short, poly leakage, and contact high resistance are also found in these cases. It is concluded that, by the selection of control parameters, Infrascan 200TD provides several capabilities of failure site localization and can be applied to different failure modes.


Author(s):  
Todd Castello ◽  
Dan Rooney ◽  
Dongkai Shangguan

Abstract Printed circuit board assembly with lead free solder is now a reality for most global electronics manufacturers. Extensive research and development has been conducted to bring lead free assembly processes to a demonstrated proficiency. Failure analysis has been an integral part of this effort and will continue to be needed to solve problems in volume production. Many failure analysis techniques can be directly applied to study lead free solder interconnects, while others may require some modification in order to provide adequate analysis results. In this paper, several of the most commonly applied techniques for solder joint failure analysis will be reviewed, including visual inspection, x-ray radiography, mechanical strength testing, dye & pry, metallography, and microscopy/photomicrography, comparing their application to lead bearing and lead free solder interconnects. Common failure modes and mechanisms will be described with examples specific to lead free solders, following PCB assembly as well as after accelerated reliability tests.


Author(s):  
Muhammad Monzur Morshed ◽  
Esther Chen ◽  
Anita Madan

Abstract Dissimilarities of thermal expansion coefficient between chip and package materials results in stress and strain at the solder interconnect leading to fatigue failures. Underfill is used between chip and package to reduce the interfacial stress and hence increase reliability. In this work, four flipchip package test vehicles underwent thermal cycling to accelerate the stress and were investigated systematically with different failure analysis techniques to study their failure modes. The prevalent failure mode was observed to be at the corner area between the chip and package using different advanced failure analysis techniques. This work demonstrates the technical complexity of analyzing stress induced defects and provides insight into CPI-based material selection.


Author(s):  
Cha-Ming Shen ◽  
Tsan-Chen Chuang ◽  
Chen-May Huang ◽  
Shi-Chen Lin ◽  
Jie-Fei Chang

Abstract With the evolution of advanced process technology, failure analysis has become more and more difficult because more defects are of the non-visual type (very tiny or even invisible defects) from new failure mechanisms. In this article, a novel and effective methodology which couples the conductive atomic force microscope (C-AFM) with nano-probing technique is proposed to reveal some particular failure modes which were not observable and difficult to identify with traditional physical failure analysis techniques. The capability of coupling C-AFM with nano-probing technique is used to distinguish cases which suffer general junction leakage or gate leakage from those that form the fake junction leakage or gate leakage cases. C-AFM can detect the abnormal contacts quickly, and nano-probing could provide the precise electrical characteristic further. Then, combining these variant measuring results, the favorable tactics can be adopted to deal with different states.


Author(s):  
Bryan Tracy ◽  
Jonnie Barragan ◽  
Ilana Grimberg ◽  
Efrat Raz

Abstract This article presents a step-by-step sample preparation method for the cross sectioning of silicon die in a ceramic package without the need for die removal or epoxy encapsulation. The sample preparation includes sawing the package, sample mounting to the polishing stub, and FIB cutting the area of interest and SEM Exam. In addition, a discussion on an automatic polishing method is included. This method is applicable for a broad range of silicon (Si) die package technologies and has also been successfully used on "TSOP" and state-of-the-art microprocessor packages which include the "organic" substrate, the Si die, and the massive copper die lid. The entire failure analysis is done at room temperature, eliminating any questions about sample preparation artifacts. Because the sample is imaged in the SEM at 90 degrees, much improved layer detail and voids microstructure is present in the final image.


Author(s):  
D. Davis

Abstract The failure analyst is often times challenged with the analysis of devices that fail due to speed degradation. These are units that pass the entire standard test program as long as the speed at which the device is tested is kept below a certain level. Many times, these units are binned and sold to customers at reduced prices. The unresolved rate for these types of failures is often sporadic and at times there isn’t any defect that is physically observable or detectable with global EFA (electrical failure analysis) techniques. These devices are usually from an advanced process where a shift in performance such as current, voltage, and speed (frequency) is common.


Author(s):  
Sofia K. Georgiadis

Fault Tree Analysis (FTA) is one of the key safety evaluation techniques used by New York City Transit (NYCT). First developed over 50 years ago, this technique continues to provide valuable insight for failure analysis of systems. Its use is widespread in safety-critical systems analysis across industry boundaries, including defense, nuclear, aerospace, chemical [1], and transportation industries. FTAs provide a systematic, top-down methodology to safety analysis. As such, it complements other safety analysis techniques, such as Failure Modes Effect Analysis (FMEA), which is a bottom-up failure analysis [2]. Formal Methods analyses, including Theorem Proving and Model Checking, are powerful development and analysis methodologies, both used by NYCT, that provide assurance of product’s correctness and safety. With these other safety analysis techniques, the FTA continues to play a key role in the NYCT Safety Program. This paper will examine how NYCT uses FTAs for the safety analysis of microprocessor-based signaling systems. FTAs are used by NYCT throughout the system lifecycle. Initially, during the system development phase, NYCT requires system suppliers to develop Fault Tree Analyses of their systems, as a requirement for NYCT safety certification and deployment. For the system maintenance phase, NYCT uses the outputs of suppliers’ analyses to develop and enforce maintenance and operational procedures. In this manner, NYCT’s use of FTA provides full lifecycle value by providing design, maintenance, and operational insight into the causes of hazardous events. Through the examination of example fault trees and an overview of the FTA process, this paper will present the NYCT’s implementation of this powerful analysis tool, and will describe the benefits gained from using this methodology.


Author(s):  
Mary A. Miller ◽  
Darlene M. Udoni

Abstract This work outlines a case study of charge-induced damage to SOI wafers that caused gate leakage in discrete transistors and static leakage in packaged integrated circuits (ICs). The consequential yield fallout occurred primarily at wafer center. Electrical, optical, and laser-based failure analysis techniques were used to characterize the damage and determine root cause of electrical failure. The failure mechanism was localized to a rinse step during chemical mechanical planarization (CMP). Furthermore, both current-voltage (IV) sweeps and characteristic spatial patterns generated by thermally-induced voltage alteration (TIVA) were used to capture the trends on both packaged ICs and SOI wafers for this type of charge-induced damage; this led to quick identification of another source of charge-induced damage that affected the post-fab yield.


Author(s):  
M. J. Campin ◽  
P. Nowakowski ◽  
P. E. Fischione

Abstract The size of devices on state-of-the-art integrated circuits continues to decrease with each technology node, which drives the need to continually improve the resolution of electrical failure analysis techniques. Solid immersion lenses are commonly used in combination with infrared light to perform analysis from the backside of the device, but typically only have resolutions down to ~200 nm. Improving resolution beyond this requires the use of shorter wavelengths, which in turn requires a silicon thickness in the 2 to 5 µm range. Current ultra-thinning techniques allow consistent thinning to ~10 µm. Thinning beyond this, however, has proven challenging. In this work, we show how broad beam Ar ion milling can be used to locally thin a device’s backside silicon until the remaining silicon thickness is < 5 µm.


Author(s):  
K. A. Fisher ◽  
M. G. L. Gustafsson ◽  
M. B. Shattuck ◽  
J. Clarke

The atomic force microscope (AFM) is capable of imaging electrically conductive and non-conductive surfaces at atomic resolution. When used to image biological samples, however, lateral resolution is often limited to nanometer levels, due primarily to AFM tip/sample interactions. Several approaches to immobilize and stabilize soft or flexible molecules for AFM have been examined, notably, tethering coating, and freezing. Although each approach has its advantages and disadvantages, rapid freezing techniques have the special advantage of avoiding chemical perturbation, and minimizing physical disruption of the sample. Scanning with an AFM at cryogenic temperatures has the potential to image frozen biomolecules at high resolution. We have constructed a force microscope capable of operating immersed in liquid n-pentane and have tested its performance at room temperature with carbon and metal-coated samples, and at 143° K with uncoated ferritin and purple membrane (PM).


Sign in / Sign up

Export Citation Format

Share Document