scholarly journals Behaviour and push-out test of concrete dowel connectors for longitudinal shear in shallow-hollow composite beams

Author(s):  
Han Ngoc Duc ◽  
Vu Anh Tuan ◽  
Nguyen Tuan Dat

The shear transferring mechanisms of shallow-hollow composite beams with concrete slab cast in place are different with conventional headed shear studs and have not been investigated previously. In this study, the behavior and push-out test of concrete dowel connectors for longitudinal shear in shallow-hollow composite beams are described. The theory prediction for concrete dowel connectors without tie-bars adopted in this study was based on EN 1992-1-1 and EN 1994-1-1. Push-out tests of three specimens were conducted and the results were compared with theory prediction and published formula to identify longitudinal shear resistance. The failure of specimens and the ultimate failure load values of push-out test were proved that the behavior of concrete dowel in shallow-hollow composite beams was not under pure shear stress. Keywords: steel-concrete composite beam; shallow-hollow composite beam; concrete dowel connectors; longitudinal shear resistance; shallow floor structure.

1976 ◽  
Vol 3 (4) ◽  
pp. 514-522 ◽  
Author(s):  
M. N. El-Ghazzi ◽  
H. Robinson ◽  
I. A. S. Elkholy

The longitudinal shear failure of the slab of composite beams is constrained to occur at a predetermined shear surface. A method for calculating the longitudinal shear capacity of the slab of simply-supported steel–concrete composite beams is presented. The method is based on analyzing the stresses at failure of the concrete elements located at the slab shear surface.A design chart based on estimating the transverse normal stress required within the concrete slab to achieve the full ultimate flexural capacity of the composite beam is proposed. Alternatively, using elastic–plastic stress distribution across the concrete slab, the longitudinal compressive force due to bending and hence the applied moment can be predicted for any longitudinal shear capacity of the slab. The proposed design and analysis when compared to previous tests and analysis showed good agreement.The slab width and the shear span of the composite beam are found to be two important parameters which cannot be neglected when estimating the longitudinal shear capacity of the slab. These two parameters have been neglected in the empirical solutions previously adopted.


1995 ◽  
Vol 22 (1) ◽  
pp. 80-92 ◽  
Author(s):  
E. C. Oguejiofor ◽  
M. U. Hosain

This paper presents the test results of six full-size composite beam specimens with perfobond rib shear connectors embedded in solid concrete slab. The objective of this investigation was to study the performance of this connector in full-size composite beams and to correlate the test results with those obtained from push-out specimens. In the first three beam specimens, the amount of transverse reinforcement was varied. Two other specimens were used to investigate the effectiveness of more perfobond rib connectors of shorter length. The effect of passing transverse reinforcing bars through the connector rib holes was investigated using the last specimen. Failure of the test specimens was initiated by longitudinal splitting of the concrete slab, eventually culminating in the crushing of concrete in the bearing zone immediately in front of the end perfobond rib connectors. The test results showed that increasing the transverse reinforcement ratio, excluding the wire mesh, from 0.11% to 0.20% led to a 10% increase in the ultimate capacity. The test specimen with six 251 mm long connectors sustained 11% higher ultimate capacity compared to that with four 376 mm long connectors. An increase of 8.4% in the ultimate strength was observed when transverse reinforcing bars were passed through the perfobond rib holes while keeping the total amount of transverse reinforcement unchanged. The experimental values of the ultimate flexural capacity of the beam specimens were, on the average, approximately 1.11 times the predicted values based on push-out test results. Key words: composite beam, perfobond rib connector, push-out test, full-size test, flexural capacity.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2632
Author(s):  
Yafeng Hu ◽  
Yang Wei ◽  
Si Chen ◽  
Yadong Yan ◽  
Weiyao Zhang

A timber–lightweight−concrete (TLC) composite beam connected with a ductile connector in which the ductile connector is made of a stainless−steel bolt anchored with nuts at both ends was proposed. The push−out results and bending performance of the TLC composite specimens were investigated by experimental testing. The push−out results of the shear specimens show that shear–slip curves exhibit good ductility and that their failure can be attributed to bolt buckling accompanied by lightweight concrete cracking. Through the bending tests of ten TLC composite beams and two contrast (pure timber) beams, the effects of different bolt diameters on the strengthening effect of the TLC composite beams were studied. The results show that the TLC composite beams and contrast timber beams break on the timber fiber at the lowest edge of the TLC composite beam, and the failure mode is attributed to bending failure, whereas the bolt connectors and lightweight concrete have no obvious breakage; moreover, the ductile bolt connectors show a good connection performance until the TLC composite beams fail. The ultimate bearing capacities of the TLC composite beams increase 2.03–3.5 times compared to those of the contrast beams, while the mid-span maximum deformation decrease nearly doubled.


Author(s):  
Mohammed Abdulhussein Al-Shuwaili ◽  
Alessandro Palmeri ◽  
Maria Teresa Lombardo

Push-out tests (POTs) have been widely exploited as an alternative to the more expensive full-scale bending tests to characterize the behaviour of shear connections in steel-concrete composite beams. In these tests, two concrete slabs are typically attached to a steel section with the connectors under investigation, which are then subjected to direct shear. The results allow quantifying the relationship between applied load and displacements at the steel-concrete interface. Since this relationship is highly influenced by the boundary conditions of POT samples, different experimental setups have been used, where the slabs are either restricted or free to slide horizontally, as researchers have tried to reduce any discrepancy between POT and full-scale composite beam testing. Based on a critical review of various POT configurations presented in the dedicated literature, this paper presents an efficient one-sided POT (OSPOT) method. While OSPOT and POT specimens are similar, in the proposed OPSPOT setup only one of the two slabs is directly loaded in each test, and the slab is free to move vertically. Thus, two results can be obtained from one specimen, i.e. one from each slab. A series of POTs and OSPOTs have been conducted to investigate the behaviour and the shear resistance of headed stud connectors through the two methods of testing. The results of this study than were compared with those of different POTs setups conducted by other researchers. The new OSPOT results show in general an excellent agreement with the analytical predictions offered by both British and European standards, as well as the estimated shear resistance proposed other researchers in the literature. These findings suggest that the proposed one-sided setup could be used as an efficient and economical option for conducting the POT, as it has the potential not only to double the number of results, but also to simplify the fabrication of the samples, which is important in any large experimental campaign, and to allow testing with limited capacity of the actuator. 


2020 ◽  
Vol 12 (20) ◽  
pp. 8328 ◽  
Author(s):  
Tomas Kinderis ◽  
Mindaugas Daukšys ◽  
Jūratė Mockienė

Over the past decade, several types of composite slim floor constructions have been used in multi-storey buildings in Lithuania. In order to study the efficiency of composite beam application in steel-framed multi-storey buildings, Thorbeam (A1), Deltabeam (A2), slim floor beam (A3) and asymmetric slim floor beam (A4) were chosen and evaluated according to nine assessment criteria (beam cost (K1), initial preparation on site (K2), installation time (K3), complexity of installation technology (K4), labour costs (K5), fire resistance (K6), load bearing capacity (K7), beam versatility (K8), and availability of beams (K9)). First, the significance of the rating criteria was selected and the order of the ranking criteria was obtained (K1˃K7˃K3˃K6˃K4˃K5˃K2˃K8˃K9) by means of a survey questionnaire. Second, the beams were ranked according to the points given by the questionnaire respondents as follows: 160 points were given to A2, 144 points to A1, 129 points to A4, and 111 points to A3. Deltabeam is considered to be the most rational alternative of the four beams compared. Calculations done using the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) analysis method revealed that composite beam A2 was the best slim floor structure alternative for an eight-storey high-rise commercial residential building frame, A1 ranked second, A4 ranked third, and A3 ranked fourth. In addition, the four composite beams were compared to a reinforced concrete beam (A5) according to three assessment criteria (beam cost including installation (C1), beam self-weight (C2) and fire resistance (C3)). Deltabeam was found to be efficient for use as a slim floor structure in a multi-story building due to having the lowest cost, including installation, and self-weight, and the highest fire resistance compared to other composite beams studied. Although Deltabeams are 1.4 times more expensive than reinforced concrete beams, including installation costs, they save about 2.5% of the building’s height compared to reinforced concrete beams.


2012 ◽  
Vol 166-169 ◽  
pp. 414-419
Author(s):  
Li Hua Chen ◽  
Fei Xiao ◽  
Qi Liang Jin

Based on the theoretical analysis and testing results, some key issues in design of outer-plated steel-concrete continuous composite beams are discussed. The influence of the form of steel beam upper flange on the behavior of composite beam is analyzed. The requirements about longitudinal reinforcement strength in the concrete flange of the negative moment region are given. It is suggested that the moment-shear interaction should be neglected when calculating the flexural capacity of outer-plated steel-concrete composite beams under negative bending moment. The behavior of longitudinal shear resistance at the interface between the concrete flange and web of composite beam is studied, and the related calculating formula is put forward based on the structural features of the composite beam.


2018 ◽  
Vol 64 (2) ◽  
pp. 97-110
Author(s):  
V. Jayanthi ◽  
C. Umarani

AbstractShear connectors are designed in steel-concrete composite construction to transmit the longitudinal shear, to prevent separation of steel and concrete slabs, and also to increase the structural efficiency of the whole system. In this study, the performances of different types of shear connectors in steel-concrete composite specimens are evaluated by conducting push-out tests under monotonic loading conditions. An ISMB 200 @ 25.4 kg/m universal steel beam measuring 400 mm and a reinforced cement concrete slab measuring 300 mm with a breadth of 200 mm and a thickness of 200 mm reinforced with 8 mm diameter steel rods are used for the experimental study. The results reveal that the load-slip relationships for various types of shear connectors and failure mechanisms are obtained to identify those shear connectors which are more relevant to the steel - concrete composite members.


2016 ◽  
Vol 7 (2) ◽  
pp. 142-157 ◽  
Author(s):  
Kristi L. Selden ◽  
Amit H. Varma

Purpose The purpose of this study was to develop a three-dimensional (3D) finite element modeling (FEM) technique using the commercially available program ABAQUS to predict the thermal and structural behavior of composite beams under fire loading. Design/methodology/approach The model was benchmarked using experimental test data, and it accounts for temperature-dependent material properties, force-slip-temperature relationship for the shear studs and concrete cracking. Findings It was determined that composite beams can be modeled with this sequentially coupled thermal-structural 3D FEM to predict the displacement versus bottom flange temperature response and associated composite beam failure modes, including compression failure in the concrete slab, runaway deflection because of yielding of the steel beam or fracture of the shear studs. Originality/value The Eurocode stress-strain-temperature (σ-ε-T) material model for structural steel and concrete conservatively predict the composite beam deflections at temperatures above 500°C. Models that use the National Institute of Standards and Technology (NIST) stress-strain-temperature (σ-ε-T) material model more closely match the measured deflection response, as compared to the results using the Eurocode model. However, in some cases, the NIST model underestimates the composite beam deflections at temperatures above 500°C.


2018 ◽  
Vol 7 (3.10) ◽  
pp. 54
Author(s):  
T Subramani ◽  
A Periasamy

Composite plays a vital role in replacing the existing mild steel in reinforcement and exterior truss structure. This study proposed to design shear connector for joining concrete slab and steel section. Shear connectors has analyzed and predict the best connector for a particular composite beam with respect to static load and the amount of steel in the connector as a common aspect. The use of composite structures is increasingly present in civil construction works nowadays. Composite beams, especially, are structures which include substances, a metal phase placed in particular inside the tension region and a concrete phase, positioned in the compression go sectional location, both are related with the aid of steel gadgets called shear connectors. The main features of this connector are to permit the weight for the joint the beam-column, to restriction longitudinal slipping and uplifting on the factors interface the shear forces. Our project paper presents 3D numerical models of steel-concrete composite beams to simulate their structural behaviour, with emphasis on the beam column interface using Simulations software ANSYS 18.1 based on the Finite Element Method. Mostly these type of structures are widely used in the dynamic loading structures like bridges and high rise buildings.  


1992 ◽  
Vol 19 (1) ◽  
pp. 1-10 ◽  
Author(s):  
M. R. Veldanda ◽  
M. U. Hosain

This paper summarizes the results of tests performed on 48 push-out specimens to investigate the feasibility of using perfobond rib type shear connectors in composite beams with ribbed metal decks placed parallel to the steel beams. The perfobond rib shear connector is a flat steel plate containing a number of holes. The results indicate that perfobond rib connectors can be effectively used in composite beams with ribbed metal decks placed parallel to the steel beams. An appreciable improvement in performance was observed in test specimens when additional reinforcing bars were passed through the perfobond rib holes. Shank shear was the principal mode of failure in specimens with headed studs. In specimens with perfobond rib, failure was triggered by the longitudinal splitting of the concrete slab, followed by the crushing of concrete in front of the perfobond rib. Key words: composite beam, shear connector, perfobond rib, headed stud, push-out test, metal deck.


Sign in / Sign up

Export Citation Format

Share Document