scholarly journals Evaluation of Phenotypic Variations in the Antibiotics Sensitivity of Escherichia Coli by Repeated Exposure

Author(s):  
Andry Maharo Andrianarivelo ◽  
Christian Emmanuel Mahavy ◽  
Marson Raherimandimby ◽  
Tsiry Rasamiravaka

Enterobacteriaceae, in particular Escherichia coli, are habitual residents of the gastrointestinal tract, capable of causing a large number of infections. The MIC varies according to the bacterial strains and the antibiotics used, hence the need to carry out antibiotic sensitivity tests. The objective of this study is to evaluate the behavior of Escherichia coli after repeated exposure to the same antibiotic to demonstrate a possible correlation between excessive intake of antibiotics and bacterial resistance. A prospective and descriptive study was carried out in the Laboratory of Microbiology of Fundamental and Applied Biochemistry (Faculty of Sciences Antananarivo) during the month of November 2019. The strains studied were the reference strain Escherichia coli ATCC 25922 provided by the Laboratory and two clinical strains from the Microbiology Laboratory of the Joseph Ravoahangy Andrianavalona University Hospital Center (CHU JRA) Antananarivo. Repeated exposure to Tobramycin and Ofloxacin of these strains were performed. The results of our study showed that most E. coli is exposed to the antibiotic, the more it develops resistance. The evolution of E. coli's sensitivity is different in the presence of Tobramycin with MICs up to 4 times the starting value while in the presence of Ofloxacin, the MIC increases to 125 times the initial value. This difference may be due to the different target of the antibiotic which causes the bacteria to develop variable mechanisms to escape it. Key words: E. coli - MIC - antibiotics - repeated exposure

2017 ◽  
Vol 38 (4) ◽  
pp. 1887
Author(s):  
Laura Gonçalves da Silva Chagas ◽  
Poliana De Castro Melo ◽  
Silvia Cassimiro Brasão ◽  
Gabriela Bim Ramos Silvestre ◽  
Ednaldo Carvalho Guimarães ◽  
...  

The presence of biofilm-forming bacteria from the mammary gland of dairy cows adhered to equipment in the milking environment represents one of the major causes of bacterial resistance during mastitis treatment. The aim of this study was to identify strains of Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli in milk samples from cows with mastitis, as well as in the expansion tank and milking set liners. We aimed to quantify the extracellular proteins and polysaccharides in the biofilm produced by each strain. A total of 294 samples were collected from a dairy farm in the municipality of Uberlândia, Minas Gerais. To identify the S. aureus, S. epidermidis and E. coli isolates responsible for biofilm production, we tested the phenotype using the Congo red agar (CRA) and microplate adhesion tests. Protein quantification was performed with a Bicinchoninic Acid Protein Assay Kit (BCA kit), and polysaccharides were quantified by the phenol sulfuric acid method. We identified eight strains of S. aureus, one strain of S. epidermidis and 11 strains of E. coli responsible for biofilm production, all of which showed a higher concentration of polysaccharides than proteins in the matrix. Escherichia coli was considered the most prevalent bacterium among the samples, and S. aureus was determined to be the largest biofilm producer. The results of the CRA and microplate adhesion tests were similar in regard to identification of the biofilm-producing strains according to their phenotype and matrix composition. The classification of S. aureus strains as major biofilm producers is of great concern for producers, as such bacteria are considered one of the predominant contagious etiological agents that cause bovine mastitis. In addition, our observation that E. coli and S. epidermidis can produce biofilms highlights the need to reassess prophylactic measures to avoid the adhesion of biofilm-producing bacteria.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 824
Author(s):  
Hala Nehme ◽  
Helena Ayde ◽  
Dany El Obeid ◽  
Jean Marc Sabatier ◽  
Ziad Fajloun

Bacterial resistance has become a worrying problem for human health, especially since certain bacterial strains of Escherichia coli (E. coli) can cause very serious infections. Thus, the search for novel natural inhibitors with new bacterial targets would be crucial to overcome resistance to antibiotics. Here, we evaluate the inhibitory effects of Apis mellifera bee venom (BV-Am) and of its two main components -melittin and phospholipase A2 (PLA2)- on E. coli F1F0-ATPase enzyme, a crucial molecular target for the survival of these bacteria. Thus, we optimized a spectrophotometric method to evaluate the enzymatic activity by quantifying the released phosphate from ATP hydrolysis catalyzed by E. coli F1F0-ATPase. The protocol developed for inhibition assays of this enzyme was validated by two reference inhibitors, thymoquinone (IC50 = 57.5 μM) and quercetin (IC50 = 30 μM). Results showed that BV-Am has a dose-dependent inhibitory effect on E. coli F1F0-ATPase with 50% inhibition at 18.43 ± 0.92 μg/mL. Melittin inhibits this enzyme with IC50 = 9.03 ± 0.27 µM, emphasizing a more inhibitory effect than the two previous reference inhibitors adopted. Likewise, PLA2 inhibits E. coli F1F0-ATPase with a dose-dependent effect (50% inhibition at 2.11 ± 0.11 μg/mL) and its combination with melittin enhanced the inhibition extent of this enzyme. Crude venom and mainly melittin and PLA2, inhibit E. coli F1F0-ATPase and could be considered as important candidates for combating resistant bacteria.


2010 ◽  
Vol 5 (6) ◽  
pp. 827-830
Author(s):  
Georgi Slavchev ◽  
Nadya Markova

AbstractUropathogenic strains of E. coli isolated from urine of patients with urinary tract infections were tested for antibiotic sensitivity using bio-Merieux kits and ATB-UR 5 expression system. The virulence of strains was evaluated by serum bactericidal assay, macrophage “killing” and bacterial adhesive tests. Survival capability of strains was assessed under starvation in saline. The results showed that quinolone-resistant uropathogenic strains of E. coli exhibit significantly reduced adhesive potential but relatively high resistance to serum and macrophage bactericidity. In contrast to laboratory strains, the quinolone-resistant uropathogenic clinical isolate demonstrated increased viability during starvation in saline. Our study suggests that quinolone-resistant uropathogenic strains are highly adaptable clones of E. coli, which can exhibit compensatory viability potential under unfavorable conditions. The clinical occurrence of such phenotypes is likely to contribute to the survival, persistence and spread strategy of resistant bacteria.


Antibiotics ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 98 ◽  
Author(s):  
Eunice Mgbeahuruike ◽  
Pia Fyhrquist ◽  
Heikki Vuorela ◽  
Riitta Julkunen-Tiitto ◽  
Yvonne Holm

Piper guineense is a food and medicinal plant commonly used to treat infectious diseases in West-African traditional medicine. In a bid to identify new antibacterial compounds due to bacterial resistance to antibiotics, twelve extracts of P. guineense fruits and leaves, obtained by sequential extraction, as well as the piperine and piperlongumine commercial compounds were evaluated for antibacterial activity against human pathogenic bacteria. HPLC-DAD and UHPLC/Q-TOF MS analysis were conducted to characterize and identify the compounds present in the extracts with promising antibacterial activity. The extracts, with the exception of the hot water decoctions and macerations, contained piperamide alkaloids as their main constituents. Piperine, dihydropiperine, piperylin, dihydropiperylin or piperlonguminine, dihydropiperlonguminine, wisanine, dihydrowisanine and derivatives of piperine and piperidine were identified in a hexane extract of the leaf. In addition, some new piperamide alkaloids were identified, such as a piperine and a piperidine alkaloid derivative and two unknown piperamide alkaloids. To the best of our knowledge, there are no piperamides reported in the literature with similar UVλ absorption maxima and masses. A piperamide alkaloid-rich hexane leaf extract recorded the lowest MIC of 19 µg/mL against Sarcina sp. and gave promising growth inhibitory effects against S. aureus and E. aerogenes as well, inhibiting the growth of both bacteria with a MIC of 78 µg/mL. Moreover, this is the first report of the antibacterial activity of P. guineense extracts against Sarcina sp. and E. aerogenes. Marked growth inhibition was also obtained for chloroform extracts of the leaves and fruits against P. aeruginosa with a MIC value of 78 µg/mL. Piperine and piperlongumine were active against E. aerogenes, S. aureus, E. coli, S. enterica, P. mirabilis and B. cereus with MIC values ranging from 39–1250 µg/mL. Notably, the water extracts, which were almost devoid of piperamide alkaloids, were not active against the bacterial strains. Our results demonstrate that P. guineense contains antibacterial alkaloids that could be relevant for the discovery of new natural antibiotics.


2014 ◽  
Vol 77 (7) ◽  
pp. 1212-1218 ◽  
Author(s):  
BURTON BLAIS ◽  
MYLÈNE DESCHÊNES ◽  
GEORGE HUSZCZYNSKI ◽  
MARTINE GAUTHIER

A simple immunoenzymatic enterohemorrhagic Escherichia coli (EHEC) colony check (ECC) assay was developed for the presumptive identification of priority EHEC colonies isolated on plating media from enrichment broth cultures of foods. With this approach, lipopolysaccharide extracted from a colony is spotted on the grid of a polymyxin-coated polyester cloth strip, and bound E. coli serogroup O26, O45, O103, O111, O121, O145, and O157 antigens are subsequently detected by sequential reactions with a pool of commercially available peroxidase-conjugated goat antibodies and tetramethylbenzidine substrate solution. Each strip can accommodate up to 15 colonies, and test results are available within 30 min. Assay performance was verified using colonies from a total of 73 target EHEC isolates covering the range of designated priority serogroups (all of which were reactive), 41 nontarget E. coli isolates including several nontarget Shiga toxin–producing E. coli serogroups (all unreactive), and 33 non–E. coli strains (all unreactive except two bacterial strains possessing O-antigenic structures in common with those of the priority EHEC). The ECC assay was reactive with target colonies grown on several types of selective and nonselective plating media designed for their cultivation. These results support the use of the ECC assay for high-throughput screening of colonies isolated on plating media for detecting priority EHEC strains in foods.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nurul Asyiqin Haulisah ◽  
Latiffah Hassan ◽  
Siti Khairani Bejo ◽  
Saleh Mohammed Jajere ◽  
Nur Indah Ahmad

Overuse of antimicrobials in livestock health and production beyond therapeutic needs has been highlighted in recent years as one of the major risk factors for the acceleration of antimicrobial resistance (AMR) of bacteria in both humans and animals. While there is an abundance of reports on AMR in clinical isolates from humans, information regarding the patterns of resistance in clinical isolates from animals is scarce. Hence, a situational analysis of AMR based on clinical isolates from a veterinary diagnostic laboratory was performed to examine the extent and patterns of resistance demonstrated by isolates from diseased food animals. Between 2015 and 2017, 241 cases of diseased livestock were received. Clinical specimens from ruminants (cattle, goats and sheep), and non-ruminants (pigs and chicken) were received for culture and sensitivity testing. A total of 701 isolates were recovered from these specimens. From ruminants, Escherichia coli (n = 77, 19.3%) predominated, followed by Staphylococcus aureus (n = 73, 18.3%). Antibiotic sensitivity testing (AST) revealed that E. coli resistance was highest for penicillin, streptomycin, and neomycin (77–93%). In addition, S. aureus was highly resistant to neomycin, followed by streptomycin and ampicillin (68–82%). More than 67% of E. coli isolates were multi-drug resistant (MDR) and only 2.6% were susceptible to all the tested antibiotics. Similarly, 65.6% of S. aureus isolates were MDR and only 5.5% were susceptible to all tested antibiotics. From non-ruminants, a total of 301 isolates were recovered. Escherichia coli (n = 108, 35.9%) and Staphylococcus spp. (n = 27, 9%) were the most frequent isolates obtained. For E. coli, the highest resistance was against amoxicillin, erythromycin, tetracycline, and neomycin (95–100%). Staphylococcus spp. had a high level of resistance to streptomycin, trimethoprim/sulfamethoxazole, tetracycline and gentamicin (80–100%). The MDR levels of E. coli and Staphylococcus spp. isolates from non-ruminants were 72.2 and 74.1%, respectively. Significantly higher resistance level were observed among isolates from non-ruminants compared to ruminants for tetracycline, amoxicillin, enrofloxacin, and trimethoprim/sulfamethoxazole.


2021 ◽  
Author(s):  
Shirin Ansari ◽  
James C. Walsh ◽  
Amy L. Bottomley ◽  
Iain G. Duggin ◽  
Catherine Burke ◽  
...  

Rod-shaped bacteria such as Escherichia coli can regulate cell division in response to stress, leading to filamentation, a process where cell growth and DNA replication continues in the absence of division, resulting in elongated cells. The classic example of stress is DNA damage which results in the activation of the SOS response. While the inhibition of cell division during SOS has traditionally been attributed to SulA in E. coli, a previous report suggests that the e14 prophage may also encode an SOS-inducible cell division inhibitor, previously named SfiC. However, the exact gene responsible for this division inhibition has remained unknown for over 35 years. A recent high-throughput over-expression screen in E. coli identified the e14 prophage gene, ymfM, as a potential cell division inhibitor. In this study, we show that the inducible expression of ymfM from a plasmid causes filamentation. We show that this expression of ymfM results in the inhibition of Z ring formation and is independent of the well characterised inhibitors of FtsZ ring assembly in E. coli, SulA, SlmA and MinC. We confirm that ymfM is the gene responsible for the SfiC phenotype as it contributes to the filamentation observed during the SOS response. This function is independent of SulA, highlighting that multiple alternative division inhibition pathways exist during the SOS response. Our data also highlight that our current understanding of cell division regulation during the SOS response is incomplete and raises many questions regarding how many inhibitors there actually are and their purpose for the survival of the organism. Importance: Filamentation is an important biological mechanism which aids in the survival, pathogenesis and antibiotic resistance of bacteria within different environments, including pathogenic bacteria such as uropathogenic Escherichia coli. Here we have identified a bacteriophage-encoded cell division inhibitor which contributes to the filamentation that occurs during the SOS response. Our work highlights that there are multiple pathways that inhibit cell division during stress. Identifying and characterising these pathways is a critical step in understanding survival tactics of bacteria which become important when combating the development of bacterial resistance to antibiotics and their pathogenicity.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Thi-Diem Bui ◽  
Quang-Liem Nguyen ◽  
Thi-Bich Luong ◽  
Van Thuan Le ◽  
Van-Dat Doan

In this study, Mn-doped ZnSe/ZnS core/shell quantum dots (CSQDs) were synthesized in aqueous solution using polyethylene glycol as a surface stabilizer and successfully applied in the detection of Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA) for the first time. The CSQDs were conjugated with anti-E. coli antibody and anti-MRSA antibody via protein A supported by 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide hydrochloride for fluorescent labeling of the intact bacterial cells. The detection was performed for the bacterial strains cultivated in Luria-Bertani liquid medium. The obtained results indicate that E. coli O157:H7 and MRSA can be detected within 30 min at a high sensitivity of 101 CFU/mL. This labeling method based on the highly fluorescent CSQDs may have great potential for use in the food industry to check and prevent outbreaks of foodborne illness.


1970 ◽  
Vol 2 (1) ◽  
pp. 9-14 ◽  
Author(s):  
MT Islam ◽  
MA Islam ◽  
MA Samad ◽  
SML Kabir

Mortality in broilers (6.56%) and growing ducks (11.0%) caused by Escherichia coli was recorded in the experimental flocks study during the period from May to August 2003. E. coli organisms isolated from broiler birds affected with characteristic lesions of omphalitis and yolk sac infection, fibrinous pericarditis and peri-hepatitis , hemorrhagic enteritis, and accumulation of excessive pericardial and peritoneal fluid, whereas from ducks with lesions of hemorrhagic enteritis and extensive epicardial hemorrhages. Each of the 21 isolates collected from broilers and 11 isolates from ducks was characterized by cultural and biochemical studies, of which 8 isolates from broilers and 5 isolates from ducks were tested for antibiotic sensitivity with 9 different antibiotics. The antibiotic sensitivity pattern showed that the isolates were highly sensitive to ciprofloxacin but an increasing trend of resistance was recorded in broilers (7 / 9) than duck (4 / 9) isolates. It may be concluded from the results of this study that the high rate of E. coli infection in broilers and ducks along with the high resistance of isolates to antibiotics constitute a threat to the poultry industry in Bangladesh. Key words: Escherichia coli infection; mortality; broilers; ducks; characterization; antibiogram doi: 10.3329/bjvm.v2i1.1927 Bangl. J. Vet. Med. (2004). 2 (1) : 09-14


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S287-S287
Author(s):  
Geoffrey Cheminet ◽  
Patrice Nordmann ◽  
Francoise Chau ◽  
Nicolas Kieffer ◽  
Katell Peoc’h ◽  
...  

Abstract Background A strategy used by bacterial strains to resist β-lactam antibiotics is the expression of metallo-β-lactamases (MBL) requiring zinc for activity. The use of a zinc chelator may restore carbapenem activity against MBL-producing Enterobacteriaceae. DMSA is a heavy metal chelator approved in humans with a satisfactory safety record. Our objective was to evaluate the activity of DMSA in combination with carbapenems, in vitro and in a fatal murine peritonitis model, against MBL-producing Escherichia coli. Methods Isogenic derivatives of wild-type E. coli CFT073 producing the MBL NDM-1, VIM-2, IMP-1, and the serine carbapenemases OXA-48 and KPC-3 were constructed. Minimum inhibitory concentrations (MICs) of imipenem, meropenem, and ertapenem were determined against each strain alone or in combination with DMSA. Mice were infected with E. coli CFT073 or NDM-1 and treated intraperitoneally for 24 hours with imipenem 100 mg/kg every 4 hours, DMSA 200 mg/kg every 4 hours, or both. Mice survival rates and bacterial counts in peritoneal fluid (PF) and spleen were assessed at 24 hours. Results In vitro, DMSA in combination with each carbapenem permitted a significant decrease of the MICs against all MBL-producing strains, in a concentration-dependent manner. The maximum effect was found for the NDM-1 strain with a 6- to 8-fold MIC reduction, depending on the carbapenem used. NDM-1 strain became susceptible to carbapenems with concentrations of DMSA ≥6 mM. Increasing zinc concentrations above 1 mg/L (average human plasma concentration) did not alter this effect. No benefit of DMSA was observed against non-MBL strains. In vivo, when used alone, the DMSA regimen was not toxic in uninfected mice and ineffective against NDM-1-infected mice (100% mortality). Combination of imipenem and DMSA significantly reduced bacterial counts in PF and spleen as compared with imipenem alone (P < 0.001), and reduced mortality, although not significantly (11% vs. 37%, respectively, P = 0.12). No benefit of the combination was observed against CFT073. Conclusion DMSA is highly effective in vitro in reducing carbapenems MICs against MBL-producing E. coli and appears as a promising strategy in combination with carbapenems for the treatment of NDM-1-related infections. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document