Effect of metallographic structure and machining process on the apatite-forming ability of sodium hydroxide- and heat-treated titanium

2017 ◽  
Vol 29 (1) ◽  
pp. 109-118
Author(s):  
Toshiki Miyazaki ◽  
Takashi Sasaki ◽  
Yuki Shirosaki ◽  
Ken’ichi Yokoyama ◽  
Masakazu Kawashita
BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 515-528
Author(s):  
Peter Koleda ◽  
Štefan Barcík ◽  
Michal Korčok ◽  
Zuzana Jamberová ◽  
Vadzim Chayeuski

Measuring the energy consumption and evaluating the efficiency of machining processes is necessary for their optimization and for implementation of cleaner production. The final product quality and the machining process of woodworking are of great interest. The properties of thermally modified wood make it more resistant to fungi, moulds, and ligniperdous insects than natural wood, so it is increasingly used in interior and exterior spaces. This study examined the energy demand of the milling of heat-treated oak wood (Quercus petraea) by ThermoWood® technology. The investigated technological parameters were thermal modification temperature (160 °C, 180 °C, 200 °C, and 220 °C), cutting speed (20 m × s-1, 40 m × s-1, and 60 m × s-1), feed rate (6 m × min-1, 10 m × min-1, and 15 m × min-1), and the material of the cutting tool. As the temperature of the thermal modification increased, the cutting power decreased due to a chemical degradation due to heating and reduced wood density. The lowest energy consumption was observed for the milling of wood treated at 220 °C with a cutting speed of 20 m × s-1, and a feed rate of 6 m × min-1.


Author(s):  
Zulay Cassier ◽  
Patricia Mun˜oz-Escalona ◽  
Jannelly Moreno

Stainless steels have a great application in the manufacturing process especially due to their characteristic high corrosion resistance. The machining of these materials, the study of the cutting forces, and the power required for the cutting are important parameters to be evaluated. Their relationship with other cutting variables process is crucial for the optimization of the machining process. The results of this research are empirical expressions relating cutting parameters (cutting speed, feed rate and depth of cut) to cutting forces for each stainless steel studied, AISI 304, AISI 420 and AISI 420HT (HT: Heat treated). A general expression was also developed which includes the mechanical properties of these stainless steels. These results enable the user to predict cutting forces when using a turning process.


2021 ◽  
Vol 13 (13) ◽  
pp. 7501
Author(s):  
P. Delgado-Plana ◽  
A. Rodríguez-Expósito ◽  
S. Bueno-Rodríguez ◽  
L. Pérez-Villarejo ◽  
D. M. Tobaldi ◽  
...  

The valorization of spent oil bleaching earths (SOBE) is crucial for the protection of the environment and the reuse of resources. In this research, alkali-activated binders were manufactured at room temperature using SOBE as a precursor by varying the mass ratio between the activating solutions of sodium silicate (Na2SiO3) and 6 M sodium hydroxide (NaOH) (activating solution modulus) (Na2SiO3/NaOH ratio = 1/1; 1/2; 1/3; 1/4) to investigate the influence on the technological properties of the materials. This process intends to evaluate the potential of SOBE, heat-treated at 550 °C (1 h), as a precursor of the reaction (source of aluminosilicates). Samples produced with higher amounts of sodium silicate developed a denser structure, with lower porosity and a higher amount of geopolymer gel. Maximum flexural (8.35 MPa) and compressive (28.4 MPa) strengths of samples cured at room temperature for 28 days were obtained with a Na2SiO3/NaOH mass ratio of 1/1. The study demonstrates that SOBE waste can be used as a precursor in the manufacture of geopolymer binders that show a good compromise between physical, mechanical and thermally insulating characteristics.


Author(s):  
D. Rasseko ◽  
R. Lavrov

The research continues the direction of intensification of glass-making processes by completely replacing soda ash in the glass batch with sodium hydroxide to obtain a well-classified intermediate two-component raw material. A method for obtaining a modified synthetic raw material (SRMm) for producing sodium-calcium-silicate glass based on quartz-containing raw material and sodium hydroxide is considered. SRMm consists of two parts, the chemical composition of one of which corresponds to the low-melting eutectic on the Na2O-SiO2 diagram, in contrast to the prototype SRM, the chemical composition of which corresponds to the chemical composition of silicate glass. The products of the synthesis of parts of quartz sand and sodium hydroxide are mixed with the rest of the components of the glass batch of alkali-silicate glasses, followed by possible agglomeration by known methods. The results of a comparative X-ray phase analysis of experimental charges, as well as heat-treated pelletized samples, show more pronounced glass formation processes in a charge based on SRMm than using the prototype. The use of experimental charges can intensify the physicochemical reactions at the stage of melting in a glass-making furnace, reduce the maximum melting temperature of glass, reduce the carryover of dust-like components of the charge and the technogenic load on the environment.


Author(s):  
J. Temple Black

Tool materials used in ultramicrotomy are glass, developed by Latta and Hartmann (1) and diamond, introduced by Fernandez-Moran (2). While diamonds produce more good sections per knife edge than glass, they are expensive; require careful mounting and handling; and are time consuming to clean before and after usage, purchase from vendors (3-6 months waiting time), and regrind. Glass offers an easily accessible, inexpensive material ($0.04 per knife) with very high compressive strength (3) that can be employed in microtomy of metals (4) as well as biological materials. When the orthogonal machining process is being studied, glass offers additional advantages. Sections of metal or plastic can be dried down on the rake face, coated with Au-Pd, and examined directly in the SEM with no additional handling (5). Figure 1 shows aluminum chips microtomed with a 75° glass knife at a cutting speed of 1 mm/sec with a depth of cut of 1000 Å lying on the rake face of the knife.


Author(s):  
Russell L. Steere ◽  
Eric F. Erbe

Thin sheets of acrylamide and agar gels of different concentrations were prepared and washed in distilled water, cut into pieces of appropriate size to fit into complementary freeze-etch specimen holders (1) and rapidly frozen. Freeze-etching was accomplished in a modified Denton DFE-2 freeze-etch unit on a DV-503 vacuum evaporator.* All samples were etched for 10 min. at -98°C then re-cooled to -150°C for deposition of Pt-C shadow- and C replica-films. Acrylamide gels were dissolved in Chlorox (5.251 sodium hypochlorite) containing 101 sodium hydroxide, whereas agar gels dissolved rapidly in the commonly used chromic acid cleaning solutions. Replicas were picked up on grids with thin Foimvar support films and stereo electron micrographs were obtained with a JEM-100 B electron microscope equipped with a 60° goniometer stage.Characteristic differences between gels of different concentrations (Figs. 1 and 2) were sufficiently pronounced to convince us that the structures observed are real and not the result of freezing artifacts.


Author(s):  
Thomas R. McKee ◽  
Peter R. Buseck

Sediments commonly contain organic material which appears as refractory carbonaceous material in metamorphosed sedimentary rocks. Grew and others have shown that relative carbon content, crystallite size, X-ray crystallinity and development of well-ordered graphite crystal structure of the carbonaceous material increases with increasing metamorphic grade. The graphitization process is irreversible and appears to be continous from the amorphous to the completely graphitized stage. The most dramatic chemical and crystallographic changes take place within the chlorite metamorphic zone.The detailed X-ray investigation of crystallite size and crystalline ordering is complex and can best be investigated by other means such as high resolution transmission electron microscopy (HRTEM). The natural graphitization series is similar to that for heat-treated commercial carbon blacks, which have been successfully studied by HRTEM (Ban and others).


Author(s):  
K. P. Staudhammer ◽  
L. E. Murr

The effect of shock loading on a variety of steels has been reviewed recently by Leslie. It is generally observed that significant changes in microstructure and microhardness are produced by explosive shock deformation. While the effect of shock loading on austenitic, ferritic, martensitic, and pearlitic structures has been investigated, there have been no systematic studies of the shock-loading of microduplex structures.In the current investigation, the shock-loading response of millrolled and heat-treated Uniloy 326 (thickness 60 mil) having a residual grain size of 1 to 2μ before shock loading was studied. Uniloy 326 is a two phase (microduplex) alloy consisting of 30% austenite (γ) in a ferrite (α) matrix; with the composition.3% Ti, 1% Mn, .6% Si,.05% C, 6% Ni, 26% Cr, balance Fe.


Sign in / Sign up

Export Citation Format

Share Document