Effect of Aerobic Training and High-fat Diet on Enos and Ros in Testicular Tissue of Juvenile Male Rats

2021 ◽  
Vol 20 (3) ◽  
pp. 280-289
Author(s):  
Parisa Norouzzadeh ◽  
◽  
Roghayeh Pouzesh Jadidi ◽  

Background and Objectives: This study aimed to determine the effect of a course of aerobic exercise with a high-fat diet on eNOS and ROS in testicular tissue of adolescent male rats. Subjects and Methods A total of 40 adolescent male rats (30 days old) were randomized in the following groups: normal diet control, normal diet training, high fat diet control, and high-fat diet training. The high-fat diet rats were under a high-fat regimen (5.817 kcal/g) for 30 days, and then a normal fat diet (3.801 kcal/g) was continued after the 60th day of birth. Aerobic training was conducted for four weeks included three training sessions from the 70th to 98th days of life. Results The results showed that the amount of ROS in the testicular tissue of male mice was higher only in the high-fat diet group. Also, there was no significant difference between the groups regarding eNOS testicular tissue in male mice. Conclusion A high-fat diet increases the production of reactive oxygen species in testicular tissue and is not affected by aerobic exercise. Also, neither exercise nor a high-fat diet had any effect on testicular eNOS. However, due to the limitations of this study and no evidence in this field, further studies are needed on cell phenotype, sperm fate, and identification of pathways involved in the occurrence of oxidative stress and subsequent effects of eNOS activation in testicular tissue in response to exercise and obesity.

2017 ◽  
Vol 33 (1) ◽  
pp. 177-190 ◽  
Author(s):  
Huali Wu ◽  
Qiongzhen Liu ◽  
Praveen Kumar Kalavagunta ◽  
Qiaoling Huang ◽  
Wenting Lv ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3187
Author(s):  
Eunkuk Park ◽  
Chang-Gun Lee ◽  
Hyoju Jeon ◽  
Hyesoo Jeong ◽  
Subin Yeo ◽  
...  

Medicinal plants are widely used as supplements for the treatment of various diseases because of their few side-effects. Here, we examined the anti-obesity effects of a mixture extract of Cornus officinalis and Ribes fasciculatum (CR) in high-fat diet (HFD)-induced obese male mice. Four week old male C57BL/6J mice were fed a normal diet (ND) or 60% high-fat diet (HFD) with different concentrations of CR extracts (75, 150, and 300 mg/kg/day) by oral administration for 12 weeks. CR extract administration prevented HFD-induced weight gain, hepatic steatosis, and adipocyte enlargement through the downregulation of adipogenesis-associated genes in obese male mice. In addition, CR administration improved the impaired glucose metabolism, insulin action, biochemical obesity parameters, and metabolic profiles in HFD-induced male mice. Consequently, the CR extract exhibited beneficial effects on HFD-induced systemic metabolic challenges. Taken together, our findings suggest that CR extract may be a potent therapeutic supplement for the treatment and prevention of obesity.


Author(s):  
Sirikran Juntapremjit ◽  
◽  
Yoottana Janthakhin ◽  

Abstract Indian gooseberry (Phyllanthus emblica L.) is widely used in Ayurvedic medicine, traditional Chinese medicine, as well as traditional medicine to treat health complications including disorders of diabetes and obesity. The aim of this study was to investigate the effects of Indian gooseberry fruit on anxiety-related behaviors and memory performance in high-fat diet-induced obese mice. C57BL/6 mice were randomly divided into four groups (n = 11 pre group); group 1: normal diet control, 2: normal diet treated with Indian gooseberry fruit juice, 3: high-fat diet control, and 4: high-fat diet treated with Indian gooseberry fruit juice. Each mouse was orally and daily administrated with 5mL/kg of Indian gooseberry fruit juice. After six weeks, all groups were tested for blood glucose levels, anxiety and memory performances, and the level of interleukin 6 (IL-6) in the hippocampus. The results revealed that the treatment with Indian gooseberry juice for six weeks produced a significant decrease in blood glucose levels (P <0.05). In anxiety-related behaviors, Indian gooseberry juice showed a remarkable decrease in self-grooming behavior (P <0.001). In addition, there was a significant increase in memory performance in the high-fat diet treated with Indian gooseberry fruit juice compared to the high-fat diet control (P <0.05). Furthermore, the level of inflammatory cytokine IL-6 in the hippocampus was significantly decreased after oral administration of Indian gooseberry fruit juice (P <0.05). These findings suggest that Indian gooseberry fruit can serve as a natural nutritional treatment for preventing high-fat diet-induced cognitive impairment. Keywords: Anxiety-related behaviors, High-fat diet, Indian gooseberry, Memory performance, Obesity


2021 ◽  
Vol 25 (2) ◽  
pp. 120-128
Author(s):  
J. A. OMAGE ◽  
I. A. UMAR ◽  
G. S. BAWA

The effect(s) of sesame (Sesamum Indicum L) seed oil on the growth rate, performance and some biochemical parameters in adult albino (Wister) rats maintained on a high fat diet was examined. Adult rats maintained on a high fat diet were intragastrically fed 10mg/ml of sesame seed oil suspended in normal saline, daily for 60 days. Two other groups maintained on the high fat diet only (High fat diet control) and the normal diet (Normal diet control) were included. Water and diet were provided ad libitum. The rats were weighed weekly, while feed supply and left-overs were recorded daily. At 60 days, all animals were killed by decapitation. Blood and liver samples were taken for biochemical analyses. Feeding high fat diet significantly (P<0.05) increased the final body weight, liver and kidney weights of the rats compared to those on normal diet. Administration of sesame seed oil along with high fat diet further increased (P <0.05) the final rat body weight while decrease (P<0.05) was observed in the liver weight and a significant (P 0.05) decrease in the kidney weight was observed compared to the high fat diet fed rats. Biochemical profile shows significantly (P<0.01) higher levels of plasma proteins and globulins in the normal diet-fed rats compared to the high fat-diet-fed rats. Administration of sesame seed oil along with high fat diet significantly (P<0.01) increased the plasma glucose, total proteins, globulins and uric acid concentrations compared to the high fat diet fed rats. Significantly (P<0.01) higher glucose and uric acid levels and a significantly (P<0.01) lower globulin levels were observed in the sesame seed oil group compared to the normal diet control group. The plasma albumin concentration did not differ significantly among the groups. 


Endocrinology ◽  
2021 ◽  
Author(s):  
Silas A Culver ◽  
Safia Akhtar ◽  
Callie Rountree-Jablin ◽  
Susanna R Keller ◽  
Helen P Cathro ◽  
...  

Abstract ATP6AP2 expression is increased in the nephron during high fat diet (HFD) and its knockout (ATP6AP2 KO) reduces body weight (WT) in mice. We evaluated the contribution of ATP6AP2 to urinary glucose (UG) and albumin (Ualb) handling during HFD. We hypothesized that nephron ATP6AP2 KO increases UG and Ualb and minimizes HFD-induced obesity. Eight-week old male C57BL/6J mice with inducible nephron specific ATP6AP2 KO and non-induced controls (C) were fed either normal diet (ND, 12% kcal fat) or HFD (45% kcal fat) for 6 months. ATP6AP2 KO mice on ND had 20% (p&lt;0.01) lower WT compared to C. HFD fed mice had 41% (p&lt;0.05) greater WT than ND fed C. In contrast, ATP6AP2 KO abrogated the increase in WT induced by HFD by 40% (p&lt;0.05). Mice on HFD had less caloric intake compared to ND controls (p&lt;0.01). There were no significant differences in metabolic rate between all groups. UG and Ualb was significantly increased in ATP6AP2 KO mice on both ND and HFD. ATP6AP2 KO showed greater levels of proximal tubule apoptosis and histologic evidence of proximal tubule injury. In conclusion, our results demonstrate that nephron specific ATP6AP2 KO is associated with glucosuria and albuminuria, most likely secondary to renal proximal tubule injury and/or dysfunction. Urinary loss of nutrients may have contributed to the reduced WT of knockout mice on ND and lack of WT gain in response to HFD. Future investigation should elucidate the mechanisms by which loss of renal ATP6AP2 causes proximal tubule injury and dysfunction.


2018 ◽  
Vol 19 (12) ◽  
pp. 3948 ◽  
Author(s):  
Cristiana Porcu ◽  
Silvia Sideri ◽  
Maurizio Martini ◽  
Alessandra Cocomazzi ◽  
Andrea Galli ◽  
...  

Oleuropein (Ole) is one of the most plentiful phenolic compounds with antioxidant, anti-inflammatory, anti-atherogenic, hypoglycemic and hypolipidemic effects. The aim of our study was to establish whether the positive Ole-related effects on liver steatosis could be associated with autophagy. Female and male C57BL/6J mice were fed normal diet (ND) or high-fat diet (HFD) for eight weeks, and Ole was added or not for the following eight weeks. The autophagy-related proteins Akt, mTOR, AMPK, ULK1, Beclin-1, LC3B and p62/Sqstm1 were analyzed. Interestingly, Ole induced a different regulation of the Akt/mTOR pathway in female compared to male mice, but was able to activate the autophagic process in ND and HFD mice through AMPK-dependent phosphorylation of ULK1 at Ser555, regardless of the gender. Our work reveals the ability of Ole to induce, in liver of ND and HFD mice, autophagy independently by gender-specific mTOR activation. We highlight Ole as a novel therapeutic approach to counteract unhealthy diet-related liver steatosis by targeting autophagy.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hye-Kyung Choi ◽  
Eun-Kyung Won ◽  
Young Pyo Jang ◽  
Se-Young Choung

The antiobesity effects ofCodonopsis lanceolata(CL) were evaluated in a high-calorie/high-fat-diet (HFD-) induced obesity rat model and 3T3-L1 cells. The Sprague-Dawley male rats were fed a normal diet (ND) or a HFD for a period of 12 weeks. The rats were subdivided into groups: ND, ND + wildCodonopsis lanceolata(wCL) (900 mg/kg/day, p.o.), ND + cultivatedCodonopsis lanceolata(cCL) (900 mg/kg/day, p.o.), HFD, HFD + wCL (100, 300, or 900 mg/kg/day, p.o.), HFD + cCL (100, 300, or 900 mg/kg/day, p.o.), and HFD + sibutramine. The body weight gains of the administered HFD + CL (wCL or CCL) were lower than those of the rats fed with only the HFD group. Moreover, the weight of adipose pads and the serum levels of triglycerides, total cholesterol, and low density lipoprotein cholesterol in the group administered HDL + CL were significantly lower than in the HFD group. The inhibitory effect of lipid accumulation in 3T3-L1 cells was measured by Oil Red O staining and reverse transcription-polymerase chain reaction (RT-PCR). Treatment of 3T3-L1 cells with wCL inhibited lipid accumulation and expression of C/EBPαand PPARγ. These results suggest that CL has a great potential as a functional food with anti-obesity effects and as a therapeutic alternative in the treatment of obesity.


2013 ◽  
Vol 26 (1) ◽  
pp. 8-18 ◽  
Author(s):  
Anders Abildgaard ◽  
Sten Lund ◽  
Karin S Hougaard

ObjectiveIntrauterine growth restriction (IUGR) has been associated with metabolic disorders later in life such as obesity and diabetes as well as psychiatric disorders such as depression and schizophrenia. Therefore, we wanted to investigate whether behavioural, metabolic or neuroendocrine abnormalities could be provoked or exacerbated by a high-fat diet (HFD) in an experimental model of IUGR.MethodsPregnant dams were exposed to dexamethasone (DEX) in the third gestational week to induce IUGR. Late adolescent male offspring of DEX- and vehicle-treated dams were then fed a HFD or standard chow for 8 weeks and subjected to a variety of assessments.ResultsOnly diet affected the hypothalamus-pituitary-adrenal (HPA) axis stress response, as HFD doubled the observed corticosterone levels following acute restraint. HFD and prenatal DEX exposure concomitantly exacerbated depressive-like behaviour in the forced swim test, even though no interaction was seen. Prenatal DEX treatment tended to increase the basal acoustic startle response (ASR), while an interaction between HFD and DEX was present in the ASR pre-pulse inhibition suggestive of fundamental changes in neuronal gating mechanisms. Metabolic parameters were only affected by diet, as HFD increased fasting glucose and insulin levels.ConclusionWe conclude that chronic HFD may be more important in programming of the HPA axis stress responsiveness than an adverse foetal environment and therefore potentially implies an increased risk for developing psychiatric and metabolic disease.


2018 ◽  
Vol 1 (5) ◽  
Author(s):  
Chonglin Zhang ◽  
Hui Wang ◽  
Xiaomin Ding ◽  
Shaosheng Liu ◽  
Zhi Xia

Objective Both aerobic exercise and alimentary control relieve oxidative stress (OS). However, there may be different modes. The objective of this study is to identify the effects of OS in metabolic syndrome (MS) rats and explore the mechanisms involved in aerobic exercise and alimentary control. Methods Seventy rats were used. Eight rats were randomly chosen for the control group, while the remaining rats were subjected to MS using a high-fat diet for 18 wk. The MS model rats were subsequently divided into the MHC (model control with high-fat diet), MRC (model control with routine diet), MHE (model training with high-fat diet) and MRE (model training routine diet) groups for 12 wk. The chemotactic factor macrophage chemoattractant protein-1 (MCP-1), the adherence factor plasminogen activator inhibitor I (PAI-1), the oxidative stressor oxidized low density lipoprotein (ox-LDL), and the antioxidative factor endothelial nitric oxide synthase (eNOS) were tested in the serum; moreover, the expressions of MCP-1, PAI-1, and eNOS and the regulatory factor of OS Peroxisome proliferator-activated receptor-alpha (PPARα) were detected in the myocardium. Results OS related markers in serum had changes following the interventions of aerobic exercise and/or diet control. Compared with C, the ox-LDL, MCP-1 and PAI-1 in the MS rats exhibited significant decreases (P<0.05/0.01), and the eNOS had a significant increase (P<0.05). Compared with MHC, the diet intervention alone significantly increased eNOS; when interventions of aerobic exercise but not diet control (MHE) were applied, they significantly decreased ox-LDL, MCP-1 and PAI-1 (P<0.01); the applied interventions of both aerobic exercise and diet control (MRE) decreased ox-LDL, MCP-1 and PAI-1 and significantly decreased eNOS (P<0.01). The MRE compared to MHE exhibited significant changes in MCP-1 and eNOS (P<0.01). The mRNA levels of the processing markers of OS in the myocardium. Compared with C, the MS rats had significant increases in the chemotactic factor MPC-1 (P<0.05) and the adhesion factor PAI-1 (P<0.01), which indicated that MS rats exhibited enhanced OS. Moreover, the MS rats had an increased antioxidant marker of eNOS, which was not significant, and the regulatory factor of PPARα decreased (P<0.01). Compared to MHC, the MRC rats exhibited decreased MPC-1 (P>0.05) and PAI-1 (P<0.05) and increased eNOS (P<0.01) and PPARα (P>0.05); moreover, the MHE and MRE rats decreased more in MPC-1 and PAI-1 (P<0.01) with increased eNOS and PPARα (P<0.01). Compared to MHE, the MRE rats had a further decrease in MPC-1 (P<0.01) and PAI-1 (P>0.05) with increased eNOS (P<0.05) and PPARα (P>0.05). Conclusions OS increased in MS rats. Moreover, aerobic exercise and alimentary control could decrease OS to reduce the damage in MS rats. The OS regulatory factor PPARα, which could mediate the expression of OS-related genes, such as MCP-1, PAI-1, and eNOS in cardiovascular tissues, was only enhanced by aerobic exercise and not by diet control.


2020 ◽  
Author(s):  
Ying Shi ◽  
Fangzhi Yue ◽  
Lin Xing ◽  
Shanyu Wu ◽  
Lin Wei ◽  
...  

Abstract Background Sex differences in obesity and related metabolic diseases are well recognized, however, the mechanism has not been elucidated. Gut microbiota and its metabolites may play a vital role in the development of obesity and metabolic diseases. The aim of the present study was to investigate sex differences in gut microbiota and its metabolites in a high-fat-diet (HFD) obesity rats and identify microbiota genera potentially contributing to such differences in obesity and non-alcoholic fatty liver disease (NAFLD) susceptibility. Results Sprague–Dawley rats were divided into the following groups (seven animals per group): (1) male rats on a normal diet (MND), (2) male rats on HFD (MHFD), (3) female rats on a normal diet (FND), and (4) female rats on HFD (FHFD). HFD induced more body weight gain and fat storage in female rats, however, lower hepatic steatosis in FHFD than in MHFD rats was observed. When considering gut microbiota composition, FHFD rats had lower microbiome diversity than MHFD. A significant increase of Firmicutes phylum and Bilophila genus was detected in MHFD rats, as compared with FHFD, which showed increased relative abundance of Murimonas and Roseburia . Moreover, propionic and lauric acid levels were higher in FHFD than those in MHFD rats. Conclusion HFD induced sex-related alterations in gut microbiome and fatty acids. Furthermore, the genus Bilophila and Roseburia might contribute to sex differences observed in obesity and NAFLD susceptibility.


Sign in / Sign up

Export Citation Format

Share Document