scholarly journals IN VITRO SENSITIVITY PROFILES OF ENTERIC BACTERIA ASSOCIATED WITH DIARRHEIC PATIENTS WITHIN KATSINA METROPOLIS, KATSINA STATE, NIGERIA

2020 ◽  
Vol 4 (2) ◽  
pp. 178-182
Author(s):  
Joseph Odewade ◽  
Albert Fasogbon ◽  
Felix Onyekachi

Diarrheal disease is a leading cause of mortality and morbidity across the globe. However, there is little information on the prevalence and antimicrobial sensitivity patterns of microbes associated with diarrheic patients within Katsina Metropolis, Nigeria, hence, the need for this study. Forty (40) stool samples were collected from Federal Medical Center, Katsina, Katsina State, Nigeria. Isolation and identification of the bacteria from the stool samples were carried out using standard microbiological techniques. Antibiotics sensitivity testing was carried out on all the bacterial isolates using disk diffusion method. Seventeen (17) bacterial isolates were isolated from three different genera. These include: Escherichia coli (58.82%), Salmonella typhi (29.41%) and Shigella dysenteriae (11.77%). The results of antibiotics sensitivity test showed a high (100%) resistance to amoxicillin, 70.59% resistance to streptomycin, 41.18% resistance to nalixidic acid and least (17.65%) resistance to imipenem. Multi drug resistant Escherichia coli and Shigella species were also detected. The high level of antibiotic resistance among bacterial isolates obtained from stool samples of diarrheic patients is quite alarming and requires urgent public health attention. Hence, further studies are required for the molecular detection of the resistant genes in these bacteria.

2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Delphine Girlich ◽  
Thierry Naas ◽  
Laurent Dortet

ABSTRACT The dissemination of carbapenemase-producing Enterobacteriaceae (CPE) has led to the increased use of colistin, which has resulted in the emergence of colistin-resistant Enterobacteriaceae worldwide. One of the most threatening scenarios is the dissemination of colistin resistance in CPE, particularly the plasmid-encoded resistance element MCR. Thus, it has now become mandatory to possess reliable media to screen for colistin-resistant Gram-negative bacterial isolates, especially Enterobacteriaceae. In this study, we evaluated the performances of the Superpolymyxin medium (ELITechGroup) and the ChromID Colistin R medium (bioMérieux) to screen for colistin-resistant Enterobacteriaceae from spiked rectal swabs. Stool samples were spiked with a total of 94 enterobacterial isolates (Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Enterobacter cloacae), including 53 colistin-resistant isolates. ESwabs (Copan Diagnostics) were then inoculated with those spiked fecal suspensions, and culture proceeded as recommended by both manufacturers. The sensitivity of detection of colistin-resistant Enterobacteriaceae was 86.8% (95% confidence interval [95% CI] = 74.0% to 94.0%) using both the Superpolymyxin medium and the ChromID Colistin R plates. Surprisingly, the isolates that were not detected were not the same for both media. The specificities were high for both media, at 97.9% (95% CI = 87.3% to 99.9%) for the Superpolymyxin medium and 100% (95% CI = 90.4% to 100%) for the ChromID Colistin R medium. Both commercially available media, ChromID Colistin R and Superpolymyxin, provide useful tools to screen for colistin-resistant Enterobacteriaceae from patient samples (rectal swabs) regardless of the level and mechanism of colistin resistance.


2020 ◽  
Vol 4 (3) ◽  
pp. 323-327
Author(s):  
Mamunu Abdulkadir SULAIMAN ◽  
H.S Muhammad ◽  
Aliyu Muhammad Sani ◽  
Aminu Ibrahim ◽  
Ibrahim Muhammad Hussain ◽  
...  

Multidrug resistance (MDR) exhibited by some strains of Escherichia coli may be due to acquiring mobile genetic element (R-plasmid) by the bacteria, or intrinsically induced by inappropriate use of antibiotics by the hosts.  Infection by such strains may result to prolonged illness and greater risk of death. The study evaluated the impact of curing on antibiotic resistance on selected clinical isolates of E. coli. Twenty clinical isolates of E. coli from our previous studies were re-characterized using conventional microbiological techniques. Antibiotic sensitivity testing was determined by disk diffusion method, MDR selected based on resistance to ≥ 2 classes of antibiotics. Multiple antibiotic resistance (MAR) index was determined as ratio of the number of antibiotic resisted to the total number of antibiotics tested and considered significant if ≥. 0.2. The isolates that showed significant MAR index were subjected to plasmid curing using acridine orange, thereafter, profiled for plasmid and the cured ones were re-tested against the antibiotics they initially resisted. Out of the 20 isolates, 19 (95%) were confirmed as E. coli, all (100%) of which were MDRs, which was highest against augmentin (78.9%) followed by amoxacillin (52.6%). However, after the plasmid curing only 6 (31.6%) out of the 19 isolates cured retained significant MAR index and the level of the significance had reduced drastically in 16 (84.2%) isolates. Conclusively, curing assay can completely eliminate R-plasmid acquired resistance. More studied on plasmid curing agents for possible augmentation of the agents into antibiotics may see the rise of successful antibiotic era again.


2020 ◽  
Vol 22 (97) ◽  
pp. 74-78
Author(s):  
T. I. Stetsko ◽  
Ya. M. Liubenko ◽  
V. N. Padovskyi ◽  
L. L. Ostrovska ◽  
O. Yo. Kalinina ◽  
...  

Fluoroquinolones are critical antimicrobials for both human and veterinary medicine. Due to their unique mechanism of antimicrobial action and good pharmacokinetic properties, they are often the first choice drugs in the treatment of bacterial infections in animals. The purpose of the investigation was to study the antimicrobial activity of a third-generation fluoroquinolone antibiotic of danofloxacin against bacteria, pathogens of respiratory and intestinal infection in goats. The samples of the nasal outflows (respiratory infection) and fecal masses (intestinal infection) were collected from clinically ill goats for microbiological studies. The sensitivity test of the microflora of the biomaterial, carried out by the disco-diffusion method, showed that the microorganisms of all the samples were sensitive to danofloxacin. Bacteria Streptococcus pneumonia (n = 10), Staphylococcus aureus (n = 4) and Escherichia coli (n = 2) were isolated and identified from nasal exudate samples (n = 10). Pathogenic strains of Escherichia coli were isolated from all faecal samples (n = 12). The degree of bacteriostatic activity of danofloxacin was determined by establishing its minimum inhibitory concentration (MIC) for bacterial isolates by sequential dilutions in a liquid nutrient medium. The average MIC of danofloxacin for Streptococcus pneumoniae isolates was 0.26 ± 0.13 μg/ml and for Staphylococcus aureus isolates – 0.25 ± 0.075 μg/ml. For Escherichia coli strains isolated from faeces of goats suffering from coli infection, the average MIC of danofloxacin was 0.38 ± 0.12 μg/ml (range 0.2 to 0.8 μg/ml). Antimicrobial sensitivity testing have shown a high level of bacteriostatic activity of danofloxacin against bacteria, pathogens of respiratory and intestinal infections in goats. This may be the argument for the use of danofloxacin-based chemotherapeutic agents in the treatment of bacterial infections in goats, especially for the empirical approach to therapy.


2020 ◽  
Author(s):  
Liu Wen-qiang ◽  
Xia Nan ◽  
Zhang Jing-wen ◽  
Wang Ren-hu ◽  
Jiang Gui-miao

ABSTRACTObjectiveThe aim of this study was to identify the biological features, influence factor and Genome-wide properties of pathogenic donkey Escherichia coli (DEC) isolates associated with severe diarrhea in Northern China.MethodsThe isolation and identification of DEC isolates were carried out by the conventional isolation、automatic biochemical analysis system、serotype identification、16S rRNA test、animal challenge and antibiotics sensitivity examination. The main virulence factors were identified by PCR. The complete genomic re-sequence and frame-sequence were analyzed.Results216 strains of DEC were isolated from diarrhea samples, conforming to the bacterial morphology and biochemical characteristics of E.coli. The average size of the pure culture was 329.4 nm×223.5 nm. Agglutination test showed that O78 (117/179, 65.4%) was the dominant serotype and ETEC(130/216, 60.1%) was the dominant pathogenic type. Noticeable pathogenic were observed in 9 of 10 (90%) randomly selected DEC isolates caused the death of test mice (100%, 5/5) within 6h∼48h, 1 of 10 (10%) isolates caused the death of test mice (40%, 2/5) within 72h. Our data confirmed that DEC plays an etiology role in dirarrea/death case of donkey foal. Antibiotics sensitivity test showed significant susceptibility to DEC isolates were concentrated in Nor、EFT、ENR、CIP and AMK,while the isolates with severe antibiotic resistance was AM、TE、APR、FFC、RL and CN. Multi-drug resistance was also observed. A total of 15 virulence gene fragments were determined from DEC(n=30) including OMPA (73%), safD (77%), traTa (73%), STa(67%), EAST1 (67%), astA (63%), kspII (60%), irp2 (73%), iucD (57%), eaeA (57%), VAT (47%), iss (33%), cva (27%), ETT2 (73%) and K88 (60%) respectively. More than 10 virulence genes from 9 of 30(30%) DEC strains were detected, while 6 of 30(20%) DEC strains detected 6 virulence factors. phylogenetic evolutionary tree of 16S rRNA gene from different isolates shows some variability. The original data volume obtained from the genome re-sequencing of DEC La18 was 2.55G and Genome framework sequencing was carried out to demonstrate the predicted functions and evolutionary direction and genetic relationships with other animal E.coli.ConclusionsThese findings provide firstly fundamental data that might be useful in further study of the role of DEC and provide a new understanding of the hazards of traditional colibacillosis due to the appear of new production models.


KYAMC Journal ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 87-90
Author(s):  
Abdullah Akhtar Ahmed ◽  
Nusrat Akhtar Juyee ◽  
SM Ali Hasan

Background: Colistin-resistant Gram-negative bacteria is a rapidly emerging global threatgenerated a sense of public alarm. Objective: To combat this challenge a study was designedto evaluate the fast spreading infections by colistin-resistant pathogens in the tertiary care rural hospital of Bangladesh. Materials and Methods: To study isolation ofpathogenic gram-negative bacilli,clinical sample (n-640) of hospitalized patients of Khwaja Yunus Ali Medical College Hospital in Enayetpur, Bangladesh during the 1st quarter of the year 2019 were used. The bacterial isolates were screened for meropenem and colistin-resistance. Results: A total of 156 bacterial isolates were studied which included Escherichia coli (n-112), Klebsiella pneumoniae (n-14), Pseudomonas aeruginosa (n-27), and Salmonella typhi (n-3). Antibiotic sensitivity testing showed that 32/156(20%) and 119/156 (76%) isolates were resistant to meropenem and colistin, respectively. whereas 50/156 (32%) isolates were resistant to both antibiotics. Escherichia coli, K. pneumoniae, pseudomonas aeruginosa, and Salmonella typhi isolates respectivelywere 112/156 (72%), 14/156 (9%). 27/156 (17%), and 3/156 (2%). Conclusion: Colistin is typically used as salvage therapy, or last-line treatment, for MDR gramnegative infections.But there is worrisome therapeutic scenario in our study finding of colistin resistance is 76% in Gram-negative bacteria of the clinical isolates. The restricted and rational use of colistin drug is the need of hour. KYAMC Journal Vol. 11, No.-2, July 2020, Page 87-90


2018 ◽  
pp. 1720-1724 ◽  
Author(s):  
Shahin Mahmud ◽  
K. H. M. Nazmul Hussain Nazir ◽  
Md. Tanvir Rahman

Aim: The present study was carried out to determine the prevalence and molecular detection of fluoroquinolone-resistant Escherichia coli carrying qnrA and qnrS genes in healthy broiler chickens in Mymensingh, Bangladesh, and also to identify the genes responsible for such resistance. Materials and Methods: A total of 65 cloacal swabs were collected from apparently healthy chickens of 0-14 days (n=23) and 15-35 days (n=42) old. The samples were cultured onto Eosin Methylene Blue Agar, and the isolation and identification of the E. coli were performed based on morphology, cultural, staining, and biochemical properties followed by polymerase chain reaction (PCR) targeting E. coli 16S rRNA genes. The isolates were subjected to antimicrobial susceptibility test against five commonly used antibiotics under fluoroquinolone (quinolone) group, namely gatifloxacin, levofloxacin, moxifloxacin, ofloxacin, and pefloxacin by disk diffusion method. Detection of qnrA and qnrS genes was performed by PCR. Results: Among the 65 cloacal samples, 54 (83.08%) were found to be positive for E. coli. Antibiotic sensitivity test revealed that, of these 54 isolates, 18 (33.33%) were found to be resistant to at least one fluoroquinolone antibiotic. The highest resistance was observed against pefloxacin (61.11%). By PCR, of 18 E. coli resistant to fluoroquinolone, 13 (72.22%) were found to be positive for the presence of qnrS. None of the isolates were found positive for qnrA. Conclusion: Fluoroquinolone-resistant E. coli harboring qnrS genes is highly prevalent in apparently healthy broiler chickens and possesses a potential threat to human health.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 420 ◽  
Author(s):  
Mst. Sonia Parvin ◽  
Sudipta Talukder ◽  
Md. Yamin Ali ◽  
Emdadul Haque Chowdhury ◽  
Md. Tanvir Rahman ◽  
...  

Escherichia coli is known as one of the most important foodborne pathogens in humans, and contaminated chicken meat is an important source of foodborne infection with this bacterium. The occurrence of extended-spectrum β-lactamase (ESBL)-producing E. coli (ESBL-Ec), in particular, in chicken meat is considered a global health problem. This study aimed to determine the magnitude of E. coli, with special emphasis on ESBL-Ec, along with their phenotypic antimicrobial resistance pattern in frozen chicken meat. The study also focused on the determination of ESBL-encoding genes in E. coli. A total of 113 frozen chicken meat samples were purchased from 40 outlets of nine branded supershops in five megacities in Bangladesh. Isolation and identification of E. coli were done based on cultural and biochemical properties, as well as PCR assay. The resistance pattern was determined by the disc diffusion method. ESBL-encoding genes were determined by multiplex PCR. The results showed that 76.1% of samples were positive for E. coli, of which 86% were ESBL producers. All the isolates were multidrug-resistant (MDR). Resistance to 9–11 and 12–13 antimicrobial classes was observed in 38.4% and 17.4% isolates, respectively, while only 11.6% were resistant to 3–5 classes. Possible extensive drug resistance (pXDR) was found in 2.3% of isolates. High single resistance was observed for oxytetracycline (93%) and amoxicillin (91.9%), followed by ampicillin (89.5%), trimethoprim–sulfamethoxazole, and pefloxacin (88.4%), and tetracycline (84.9%). Most importantly, 89.6% of isolates were resistant to carbapenems. All the isolates were positive for the blaTEM gene. However, the blaSHV and blaCTX-M-2 genes were identified in two ESBL-non producer isolates. None of the isolates carried the blaCTX-M-1 gene. This study provided evidence of the existence of MDR and pXDR ESBL-Ec in frozen chicken meat in Bangladesh, which may pose a risk to human health if the meat is not properly cooked or pickled raw only. This emphasizes the importance of the implementation of good slaughtering and processing practices by the processors.


2019 ◽  
Vol 11 (01) ◽  
pp. 017-022 ◽  
Author(s):  
Rashmi M. Karigoudar ◽  
Mahesh H. Karigoudar ◽  
Sanjay M. Wavare ◽  
Smita S. Mangalgi

Abstract BACKGROUND: Escherichia coli accounts for 70%–95% of urinary tract infections (UTIs). UTI is a serious health problem with respect to antibiotic resistance and biofilms formation being the prime cause for the antibiotic resistance. Biofilm can restrict the diffusion of substances and binding of antimicrobials. In this context, the present study is aimed to perform in vitro detection of biofilm formation among E. coli strains isolated from urine and to correlate their susceptibility pattern with biofilm formation. MATERIALS AND METHODS: A total of 100 E. coli strains isolated from patients suffering from UTI were included in the study. The identification of E. coli was performed by colony morphology, Gram staining, and standard biochemical tests. The detection of biofilm was carried out by Congo Red Agar (CRA) method, tube method (TM), and tissue culture plate (TCP) method. Antimicrobial sensitivity testing was performed by Kirby–Bauer disc diffusion method on Muller–Hinton agar plate. RESULTS: Of the 100 E. coli strains, 49 (49%) and 51 (51%) were from catheterized and noncatheterized patients, respectively. Biofilm production was positive by CRA, TM, and TCP method were 49 (49%), 55 (55%), and 69 (69%), respectively. Biofilm producers showed maximum resistance to co-trimoxazole (73.9%), gentamicin (94.2%), and imipenem (11.6%) when compared to nonbiofilm producers. Significant association was seen between resistance to antibiotic and biofilm formation with a P = 0.01 (<0.05). CONCLUSION: A greater understanding of biofilm detection in E. coli will help in the development of newer and more effective treatment. The detection of biofilm formation and antibiotic susceptibility pattern helps in choosing the correct antibiotic therapy.


Author(s):  
KMS Mohamed Ali ◽  
K Girija

Blood stream infections are the most important and common cause of morbidity and mortality in tertiary care hospitals. Since the results are usually not available promptly a knowledge of epidemiologic and antimicrobial susceptibility pattern of blood pathogens is life saving and very useful for early treatment and recovery of patients. The aim of this study is to describe the epidemiological, bacterial profile and antimicrobial resistance pattern of bloodstream infections in a tertiary care centre.A prospective cross-sectional study was done on seven hundred and eight blood samples collected over a period of six months in the Microbiology laboratory. Blood samples collected under aseptic conditions were cultured by aerobic culture method. Identification of bacterial isolates were done using standard bacteriologic and biochemical testing methods and antibiotic sensitivity testing done by Kirby - Bauer disc diffusion method.Bacteria was isolated in 201 (28.3%) samples with highest rates among newborns 84(41.8%). The most frequent isolates were 111 (55.2%) followed by 49 (24.4%). Results showed high susceptibilities of CoNS 111 (100%) to Vancomycin, Linezolid and 51 (98%) to Meropenem. This study highlights the common prevalent bacteriological agents in bacteremia, their antibiotic susceptibility & resistance patterns. and multi drug resistant were the leading causes of septicaemia in our hospital with Vancomycin, Linezolid and Carbapenems the effective antibiotics against these pathogens respectively.


2021 ◽  
Vol 910 (1) ◽  
pp. 012027
Author(s):  
Suhair Abed Talaa Al-Sudani ◽  
Alia Saad Al-Hafiz ◽  
Labib Ahmed Kadhim

Abstract The study was conducted to obtain the alcoholic extract of the licorice roots plant and to test its effectiveness against diagnosed bacterial isolates. This research was conducted at the Food Contamination Research Center/Department of Environment and Water/Ministry of Science and Technology. The results showed the following: 1-80% ethyl alcohol was used to obtain the alcoholic extract using a saxolite device, and the activity of the extract was tested against four bacterial isolates diagnosed in the Food Contamination Research Center, which included two gram-negative isolates of Escherichia Coli and Pseudomonas aeruginosa, and two gram-positive isolates of Bacillus Cereus and Staphylococcus aeastureus by a method, in addition to yeast by Diffusion method. The study included two treatments of biscuits with alcoholic extract (A) at a concentration of 10% and compared to the control treatment (B) without any adding and for preservation periods (1, 4, 8, 15, 22) days, and microbial tests were conducted for the biscuits. The alcoholic extract showed a lethal activity to microorganisms and no bacterial cell appeared in the biscuit samples except for the incubation period (22) days for storing biscuits, which recorded the presence of fungi (2) cells/ml. Conducting sensory evaluation of the treatments (A, B) for biscuits where there were no significant differences (P<0.05) for sensory attributes except for flavor and flakes of biscuits.


Sign in / Sign up

Export Citation Format

Share Document