scholarly journals Could Putting the Mesenchymal Stem Cells Technology into Practice Be an Optimistic Therapy for The Critically Ill COVID-19?

COVID-19 comes to light, quickly developing status. Daily, we know more about the human new coronavirus (HCoV19), which is extremely infective with heavy pneumonia connected with fast virus reproduction. Emerging in Wuhan China 31 December 2019, the contemporary COVID-19 outbreak has quickly overripe taking place directly between individuals so contagion extending to be a world health emergency at present on pandemic level. The pandemic has had deep impacts on everyday lifetime towards numerous of the world. Presently no therapy, no specified remedies or inoculations are ready to treat the patients with COVID-19 pollution and investigators here and there the globe are jostling to recognize present medication or synthesis that could be functional versus it. Therefore, there is a great unmet requirement for a secure and efficient therapy for COVID-19 contaminated cases, particularly the serious cases. What types of therapies might now assist? What are the lab craft strategies to restraining coronavirus? Ago mid-February, one tactic that has acquired rising attraction is stem cell therapy, curing that have often been saw as a potential magic bullet by despairing patients suffering from degenerative incurable conditions. In plentiful of these diseases, truth has so far to coincide with the hype. The cell based-therapy doings by supporting the body’s precocious refractory reply in an orientation that could goal the coronavirus. Now stem cell-based therapy for COVID-19 is earning incentive in China. The tally of the world emergency has visible governments frequently proclamation the company global to develop in the search for a cure, and the Australian corporate Mesoblast – a global commander in cell-based therapies for a lot of illnesses – are earned recently the approval to start clinical trials of their possess stem cell based product against COVID-19. Taking into consideration that generality of the dead sick people were produced by serious inflammation reaction, it is extremely demanding to advance efficient curative factors and strategies for that cases. I present an accurate lab modality in preparing mesenchymal stem cells (MSCs) which might be a perfect option to cure the seriously sick novel COVID-19 cases. Beneath this situation, I suppose that blood derived MSCs generated from the critically ill novel COVID-19 patient itself (autologous) suggested as a treatment for him. Therefore, my viewpoint spots a modern curative strategy.

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Mohammad T. Elnakish ◽  
Fatemat Hassan ◽  
Duaa Dakhlallah ◽  
Clay B. Marsh ◽  
Ibrahim A. Alhaider ◽  
...  

Cardiovascular disease (CVD) is the leading cause of death worldwide. According to the World Health Organization (WHO), an estimate of 17.3 million people died from CVDs in 2008 and by 2030, the number of deaths is estimated to reach almost 23.6 million. Despite the development of a variety of treatment options, heart failure management has failed to inhibit myocardial scar formation and replace the lost cardiomyocyte mass with new functional contractile cells. This shortage is complicated by the limited ability of the heart for self-regeneration. Accordingly, novel management approaches have been introduced into the field of cardiovascular research, leading to the evolution of gene- and cell-based therapies. Stem cell-based therapy (aka, cardiomyoplasty) is a rapidly growing alternative for regenerating the damaged myocardium and attenuating ischemic heart disease. However, the optimal cell type to achieve this goal has not been established yet, even after a decade of cardiovascular stem cell research. Mesenchymal stem cells (MSCs) in particular have been extensively investigated as a potential therapeutic approach for cardiac regeneration, due to their distinctive characteristics. In this paper, we focus on the therapeutic applications of MSCs and their transition from the experimental benchside to the clinical bedside.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3007 ◽  
Author(s):  
Junya Yoshioka ◽  
Yu Ohsugi ◽  
Toru Yoshitomi ◽  
Tomoyuki Yasukawa ◽  
Naoki Sasaki ◽  
...  

Bone marrow-derived mesenchymal stem cells (BMSCs) are an important cell resource for stem cell-based therapy, which are generally isolated and enriched by the density-gradient method based on cell size and density after collection of tissue samples. Since this method has limitations with regards to purity and repeatability, development of alternative label-free methods for BMSC separation is desired. In the present study, rapid label-free separation and enrichment of BMSCs from a heterogeneous cell mixture with bone marrow-derived promyelocytes was successfully achieved using a dielectrophoresis (DEP) device comprising saw-shaped electrodes. Upon application of an electric field, HL-60 cells as models of promyelocytes aggregated and floated between the saw-shaped electrodes, while UE7T-13 cells as models of BMSCs were effectively captured on the tips of the saw-shaped electrodes. After washing out the HL-60 cells from the device selectively, the purity of the UE7T-13 cells was increased from 33% to 83.5% within 5 min. Although further experiments and optimization are required, these results show the potential of the DEP device as a label-free rapid cell isolation system yielding high purity for rare and precious cells such as BMSCs.


2018 ◽  
Vol 234 (2) ◽  
pp. 1326-1335 ◽  
Author(s):  
Saeid Bagheri-Mohammadi ◽  
Mohammad Karimian ◽  
Behrang Alani ◽  
Javad Verdi ◽  
Rana Moradian Tehrani ◽  
...  

2020 ◽  
Vol 21 (5) ◽  
pp. 1638 ◽  
Author(s):  
Emilia Di Giovanni ◽  
Silvia Buonvino ◽  
Ivano Amelio ◽  
Sonia Melino

The endogenous gasotransmitter H2S plays an important role in the central nervous, respiratory and cardiovascular systems. Accordingly, slow-releasing H2S donors are powerful tools for basic studies and innovative pharmaco-therapeutic agents for cardiovascular and neurodegenerative diseases. Nonetheless, the effects of H2S-releasing agents on the growth of stem cells have not been fully investigated. H2S preconditioning can enhance mesenchymal stem cell survival after post-ischaemic myocardial implantation; therefore, stem cell therapy combined with H2S may be relevant in cell-based therapy for regenerative medicine. Here, we studied the effects of slow-releasing H2S agents on the cell growth and differentiation of cardiac Lin− Sca1+ human mesenchymal stem cells (cMSC) and on normal human dermal fibroblasts (NHDF). In particular, we investigated the effects of water-soluble GSH–garlic conjugates (GSGa) on cMSC compared to other H2S-releasing agents, such as Na2S and GYY4137. GSGa treatment of cMSC and NHDF increased their cell proliferation and migration in a concentration dependent manner with respect to the control. GSGa treatment promoted an upregulation of the expression of proteins involved in oxidative stress protection, cell–cell adhesion and commitment to differentiation. These results highlight the effects of H2S-natural donors as biochemical factors that promote MSC homing, increasing their safety profile and efficacy after transplantation, and the value of these donors in developing functional 3D-stem cell delivery systems for cardiac muscle tissue repair and regeneration.


2017 ◽  
Vol 43 (3) ◽  
pp. 891-904 ◽  
Author(s):  
Jie He ◽  
Guang-ping Ruan ◽  
Xiang Yao ◽  
Ju-fen Liu ◽  
Xiang-qing Zhu ◽  
...  

Background/Aims: Stem cell-based therapy is attractive in many clinical studies, but current data on the safety of stem cell applications remains inadequate. This study observed the safety, immunological effect of cynomolgus monkey umbilical cord mesenchymal stem cells (mUC-MSCs) injected into cynomolgus monkeys, in order to evaluate the safety of human umbilical cord mesenchymal stem cells (hUC-MSCs) prepared for human clinical application. Methods: Eighteen cynomolgus monkeys were divided into three groups. Group 1 is control group, Group 2 is low-dose group, Group 3 is high-dose group. After repeated administrations of mUC-MSCs, cynomolgus monkeys were observed for possible toxic reactions. Results: During the experiment, no animal died. There were no toxicological abnormalities in body weight, body temperature, electrocardiogram, coagulation and pathology. In the groups 2 and 3, AST and CK transiently increased, and serum inorganic P slightly decreased. All animals were able to recover at 28 days after the infusion was stopped. In the groups 2 and 3, CD3+ and IL-6 levels significantly increased, and recovery was after 28 days of infusion. There were no obvious pathological changes associated with the infusion of cells in the general and microscopic examinations. Conclusions: The safe dosage of repeated intravenous infusion of mUC-MSCs in cynomolgus monkeys is 1.0 × 107/kg, which is 10 times of that in clinical human use.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mehrdad Afarid ◽  
Fatemeh Sanie-Jahromi

COVID-19 disease has been a global health problem since late 2019. There are many concerns about the rapid spread of this disease, and yet, there is no approved treatment for COVID-19. Several biological interventions have been under study recently to investigate efficient treatment for this viral disease. Besides, many efforts have been made to find a safe way to prevent and vaccinate people against COVID-19 disease. In severe cases, patients suffer from acute respiratory distress syndrome usually associated with an increased level of inflammatory cytokines, called a cytokine storm. It seems that reequilibrating the hyperinflammatory response of the host immune system and regeneration of damaged cells could be the main way to manage the disease. Mesenchymal stem cells (MSCs) have been recently under investigation in this regard, and the achieved clinical outcomes show promising evidence for stem cell-based therapy of COVID-19. MSCs are known for their potential for immunomodulation, defense against virus infection, and tissue regeneration. MSCs are a newly emerged platform for designing vaccines and show promising evidence in this area. In the present study, we provided a thorough research study on the most recent clinical studies based on stem cells in the treatment of COVID-19 while introducing stem cell exclusivities for use as an immune disorder or lung cell therapy and its potential application for protection and vaccination against COVID-19.


Stroke ◽  
2020 ◽  
Vol 51 (9) ◽  
pp. 2854-2862 ◽  
Author(s):  
You Jeong Park ◽  
Kuniyasu Niizuma ◽  
Maxim Mokin ◽  
Mari Dezawa ◽  
Cesar V. Borlongan

Stem cell-based regenerative therapies may rescue the central nervous system following ischemic stroke. Mesenchymal stem cells exhibit promising regenerative capacity in in vitro studies but display little to no incorporation in host tissue after transplantation in in vivo models of stroke. Despite these limitations, clinical trials using mesenchymal stem cells have produced some functional benefits ascribed to their ability to modulate the host’s inflammatory response coupled with their robust safety profile. Regeneration of ischemic brain tissue using stem cells, however, remains elusive in humans. Multilineage-differentiating stress-enduring (Muse) cells are a distinct subset of mesenchymal stem cells found sporadically in connective tissue of nearly every organ. Since their discovery in 2010, these endogenous reparative stem cells have been investigated for their therapeutic potential against a variety of diseases, including acute myocardial infarction, stroke, chronic kidney disease, and liver disease. Preclinical studies have exemplified Muse cells’ unique ability mobilize, differentiate, and engraft into damaged host tissue. Intravenously transplanted Muse cells in mouse lacunar stroke models afforded functional recovery and long-term engraftment into the host neural network. This mini-review article highlights these biological properties that make Muse cells an exceptional candidate donor source for cell therapy in ischemic stroke. Elucidating the mechanism behind the therapeutic potential of Muse cells will undoubtedly help optimize stem cell therapy for stroke and advance the field of regenerative medicine.


2021 ◽  
Vol 30 ◽  
pp. 096368972098850
Author(s):  
Hang-Soo Park ◽  
Rishi Man Chugh ◽  
Amro Elsharoud ◽  
Mara Ulin ◽  
Sahar Esfandyari ◽  
...  

Primary ovarian insufficiency (POI), a condition in which there is a loss of ovarian function before the age of 40 years, leads to amenorrhea and infertility. In our previously published studies, we demonstrated recovery of POI, correction of serum sex hormone levels, increase in the granulosa cell population, and restoration of fertility in a chemotherapy-induced POI mouse model after intraovarian transplantation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). While hBM-MSC may be a promising cell source for treatment of POI, there are few reports on the safety of stem cell-based therapy for POI. For future clinical applications, the safety of allogenic hBM-MSCs for the treatment of POI through intraovarian engraftment needs to be addressed and verified in appropriate preclinical models. In this study, we induced POI in C57/BL6 mice using chemotherapy, then treated the mice with hBM-MSCs (500,000 cells/ovary) by intraovarian injection. After hBM-MSC treatment, we analyzed the migration of engrafted cells by genomic DNA polymerase chain reaction (PCR) using a human-specific ALU repeat and by whole-body sectioning on a cryo-imaging system. We examined the possibility of transfer of human DNA from the hBM-MSCs to the resulting offspring, and compared the growth rate of offspring to that of normal mice and hBM-MSC-treated mice. We found that engrafted hBM-MSCs were detected only in mouse ovaries and did not migrate into any other major organs including the heart, lungs, and liver. Further, we found that no human DNA was transferred into the fetus. Interestingly, the engrafted cells gradually decreased in number and had mostly disappeared after 4 weeks. Our study demonstrates that intraovarian transplantation of hBM-MSCs could be a safe stem cell-based therapy to restore fertility in POI patients.


Impact ◽  
2020 ◽  
Vol 2020 (7) ◽  
pp. 67-69
Author(s):  
Yun-Bae Kim ◽  
Ehn-Kyoung Choi ◽  
Hye-Rim Seong ◽  
Sangryong Park

A rapidly ageing global society means a higher prevalence of neurodegenerative diseases. Looking at dementia, for example, the most common form of which is Alzheimer's disease (AD), the World Health Organization estimates that worldwide, around 50 million people have dementia, and there are nearly 10 million new cases every year. And, it's predicted that this number could rise to 150 million people by the year 2050. It's clear that consistent and continued efforts to explore methods of prevention and treatments are required. Existing treatments include acetylcholinesterase (AChE) inhibitors, antibodies to Aβ and anti-inflammatory agents, but these are not without their drawbacks and limitations and new avenues must be explored. A group of Korean scientists believes that stem cells and regenerative medicine hold the key to alleviating the global burden of neurodegenerative diseases and this is where they are focusing their efforts. The innovative stem cell research being undertaken by Designed Cells Co., Ltd, which is based in Korea, performs important stem cell research geared towards improving life – enabling people to age gracefully and maintain wellbeing – and making treatments for neurodegenerative diseases available to all who need them. Professor James Yun-Bae Kim is CEO of the company and Dr Ehn-Kyoung Choi is Director of the company's Central Research Institute. Through their work, the researchers are collaborating with numerous companies spanning different fields, the team is keen to work with global partners in any field to further expand their work to develop treatments for AD and more widely demonstrate the effectiveness of their research.


Sign in / Sign up

Export Citation Format

Share Document