scholarly journals Criticism of Inaccuracies and Ordering of the Periodic Table of Elements

2021 ◽  
Vol 4 (2) ◽  

The atomic nucleus model was developed to clarify the revised table of elements. Between lutetium and hafnium, the difference in atomic masses does not reach four units, while new elements with atomic numbers 72-75 are located there. How can nucleons be packed in a nucleus so that it is droplet and shell and with the required number of neutrons? Such a nucleus is obtained if alpha particles are placed in the surface layer, and only neutrons are inside the nucleus. In this case, for new chemical elements with numbers 72-75 inside the nucleus, the neutron can be replaced by a proton, and therefore the atomic mass of the elements between lutetium and hafnium will change insignificantly. The model was obtained by considering the structures of atomic nuclei from heavy to light.

Author(s):  
E. L. Wolf

Protons in the Sun’s core are a dense plasma allowing fusion events where two protons initially join to produce a deuteron. Eventually this leads to alpha particles, the mass-four nucleus of helium, releasing kinetic energy. Schrodinger’s equation allows particles to penetrate classically forbidden Coulomb barriers with small but important probabilities. The approximation known as Wentzel–Kramers–Brillouin (WKB) is used by Gamow to predict the rate of proton–proton fusion in the Sun, shown to be in agreement with measurements. A simplified formula is given for the power density due to fusion in the plasma constituting the Sun’s core. The properties of atomic nuclei are briefly summarized.


2021 ◽  
Vol 43 (1) ◽  
pp. 28-29

Abstract As a follow-up to the 2019 International Year of the Periodic Table of Chemical Elements (IYPT2019), the Government of the Russian Federation proposed to establish and fund the joint UNESCO/Russian Federation International Prize for the Basic Sciences in the name of the Russian chemist Dmitry Mendeleev. The initiative is to provide further support to the UNESCO’s International Basic Sciences Programme (IBSP).


2020 ◽  
Vol 42 (2) ◽  
pp. 18-21
Author(s):  
Juris Meija ◽  
Javier Garcia-Martinez ◽  
Jan Apotheker

AbstractIn 2019, the world celebrated the International Year of the Periodic Table of Chemical Elements (IYPT2019) and the IUPAC centenary. This happy coincidence offered a unique opportunity to reflect on the value and work that is carried out by IUPAC in a range of activities, including chemistry awareness, appreciation, and education. Although IUPAC curates the Periodic Table and oversees regular additions and changes, this icon of science belongs to the world. With this in mind, we wanted to create an opportunity for students and the general public to participate in this global celebration. The objective was to create an online global competition centered on the Periodic Table and IUPAC to raise awareness of the importance of chemistry in our daily lives, the richness of the chemical elements, and the key role of IUPAC in promoting chemistry worldwide. The Periodic Table Challenge was the result of this effort.


2021 ◽  
Vol 43 (1) ◽  
pp. 28-28

Abstract The International Year of the Periodic Table of Chemical Elements 2019 (IYPT2019) has been celebrated during the year in over 130 countries, with well over a thousand events and festivities, reaching millions of young and old people, scientists and non-scientists. The event as a whole has been very successful; the 160-page report released last October illustrated in length the community partnership for global outreach and the diversity and success of the activities that took place throughout the year.


2011 ◽  
Vol 1 (1) ◽  
pp. 1-5 ◽  
Author(s):  
D.C. Hoffman

AbstractThis year (2009) marks the 140th Anniversary of Mendeleev's original 1869 periodic table of the elements based on atomic weights. It also marks the 175th anniversary of his birth in Tolbosk, Siberia. The history of the development of periodic tables of the chemical elements is briefly reviewed beginning with the presentation by Dmitri Mendeleev and his associate Nikolai Menshutkin of their original 1869 table based on atomic weights. The value, as well as the sometimes negative effects, of periodic tables in guiding the discovery of new elements based on their predicted chemical properties is assessed. It is noteworthy that the element with Z=101 (mendelevium) was identified in 1955 using chemical techniques. The discoverers proposed the name mendelevium to honor the predictive power of the Mendeleev Periodic Table. Mendelevium still remains the heaviest element to have been identified first by chemical rather than nuclear or physical techniques. The question concerning whether there will be a future role for the current form of the periodic table in predicting chemical properties and aid in the identification of elements beyond those currently known is considered.


1998 ◽  
Vol 510 ◽  
Author(s):  
P. Leveque ◽  
S. Godey ◽  
P.O. Renault ◽  
E. Ntsoenzok ◽  
J.F. Barbot

AbstractCommercial n-type 4H-SiC wafers were implanted with doses of MeV alpha particles, high enough to cause majority carrier modification. Analysis of infrared reflectivity spectra shows that the implanted crystals can be divided into three layers: a surface layer of about 30 nm followed by a compensation layer where the energy transfer of the incident particles is low and an overdoping layer in the region of maximum defect production, i.e. near the theoretical mean range of ions Rp


2012 ◽  
Vol 48 (1) ◽  
pp. 153-159 ◽  
Author(s):  
G. Kaptay

Atomic masses (weights?) is an essential information for mining and metallurgy. The paper discusses four subjects around this problem. First, the classification of all the elements is suggested into 4 classes, based on their isotope features, determining the accuracy of their known atomic masses. As part of that, the class of elements is discussed with uncertain atomic weights in accordance with the 2009 IUPAC recommendations. A better (easier to use) format of atomic weights is presented for this class of elements. Third, it is found not informative to leave empty spaces instead of approximate atomic weights for elements with unstable isotopes. Fourth, the term atomic weight vs the term atomic mass is discussed shortly, in agreement with the SI system of units and in contrary to the questionable IUPAC convection.


2021 ◽  
Author(s):  
Rochelle Forrester

The change from the traditional Western and Chinese view of the elements involving materials such as water, air, earth, wood, metal and fire, to the chemical elements making up the periodic table, to atoms, to particles such as protons, neutrons and electrons, and then to quarks was inevitable. The order of discovery of these ideas of the ultimate constituents of matter was necessary, in that they could not have been discovered in any other order. This was because nature has a particular structure and we have a particular place in nature. The traditional view of the elements could be obtained by naked eye observation, and the view of nature as being made up of the chemical elements in the periodic table was next discovered, as it involved the decomposition of traditional elements, such as air and water. This led to the idea there was a separate atom for each element which explained the differences between the elements. The sub atomic particles were discovered in a necessary order with the outer particles like the electron being discovered earlier, and inner particles such as quarks being discovered later. The order of discovery of particles was also affected by the properties of the particles. The charges of particles, their mass and ability to survive outside the particles they make up, and other properties will make a particle harder or easier to discover. The order of discovery is inevitable and set by the structure of the universe. The structure of the universe includes the structure of the atom, and of the particles making up the atom, and the properties of the atom, and of the particles making up the atom.


Author(s):  
N.К. Akhmetov ◽  
G.U. Ilyasova ◽  
S. K. Kazybekova

The article discusses a new approach to the formation of periods of the Periodic Table of Mendeleev. With the help of the new formula and the first proposed quantum states of the outer electron shells of atoms of chemical elements, the periods of the periodic table are reformatted. It is supposed to reduce the number of periods in the table by introducing the corresponding sub-periods. This is confirmed by the material given in the article. The following description of the order of formation of electron layers is proposed: the principal quantum number (n), then the newly proposed quantum states of electrons («first» and «second»), which in turn constitute the electronic configurations of sub-periods in periods, and only then the remaining quantum orbitals (s, p, d and f).


Sign in / Sign up

Export Citation Format

Share Document