scholarly journals Bioactive composites for bone regeneration

2019 ◽  
Vol 1 (1) ◽  
pp. 9-15
Author(s):  
Alexandra-Cristina Burdușel

Bone, the organ that separates vertebrates from other living beings, is a complex tissue responsible of mobility, body stability, organ protection, and metabolic activities such as ion storage. Ceramic materials are appropriate candidates to be used in the fabrication of scaffolds for bone healing. Biocompatible ceramic materials may also be created to deliver biologically active substances aimed at maintaining, repairing, restoring, or boosting the function of tissues and organs in the organism. Glass-ceramic materials furnish flexible properties appropriate for some particular applications. Because of the controlled devitrification and the evolution of variable dimensions of crystalline and glassy phases, glass-ceramics considerably overcome the lacunae found in glasses. A wide range of bioactive glass compositions had been developed since the early 1970s to make them appropriate for many clinical applications. Many bioactive ceramic composite materials attach to living bone through an apatite layer, which is developed on their surfaces in the living body. This paper reviews the most used bioactive ceramics for bone tissue regeneration, with specific accentuation on the material characteristics.

2020 ◽  
Vol 21 (14) ◽  
pp. 1412-1421 ◽  
Author(s):  
Santwona Dash ◽  
Manasa K. Panda ◽  
Mayanglambam C. Singh ◽  
Bimal P. Jit ◽  
Yengkhom D. Singh ◽  
...  

Background: Floral has diversity and unique nature due to the complex structure and component. Alpinia is an important genus of the Zingiberaceae family having complex taxonomical diversity. The presence of many unique bioactive molecules makes this genus, a pharmaceutically important genus. They provide a wide range of medicinal properties, including traditional remedies to modern therapeutic applications. Methods: Extracts of Alpinia mostly contain bioactive molecules and secondary metabolites such as polyphenolics, tannins, flavonoids and other therapeutically important compounds. These bioactive molecules are biologically active, treating against inflammation, cancer, arterial hypertension, and other deadly diseases. Results: These bioactive molecules can act as natural enzyme inhibitors for some of the deadly diseases and can block the pathway for metabolic activities. In addition, these genera have played a major role in multidisciplinary studies of phytochemistry, ethnobotany, and pharmacological aspects in day-to-day life. Conclusion: Therefore, this review highlights the fewer known facts of the genus Alpinia in terms of bioactive molecules and its significant therapeutic applications to help in combating major diseases of humans.


2009 ◽  
Vol 6 (suppl_3) ◽  
Author(s):  
Chikara Ohtsuki ◽  
Masanobu Kamitakahara ◽  
Toshiki Miyazaki

Bioactive ceramics have been used clinically to repair bone defects owing to their biological affinity to living bone; i.e. the capability of direct bonding to living bone, their so-called bioactivity. However, currently available bioactive ceramics do not satisfy every clinical application. Therefore, the development of novel design of bioactive materials is necessary. Bioactive ceramics show osteoconduction by formation of biologically active bone-like apatite through chemical reaction of the ceramic surface with surrounding body fluid. Hence, the control of their chemical reactivity in body fluid is essential to developing novel bioactive materials as well as biodegradable materials. This paper reviews novel bioactive materials designed based on chemical reactivity in body fluid.


MRS Advances ◽  
2020 ◽  
Vol 5 (61) ◽  
pp. 3123-3131
Author(s):  
Mario Flores Nicolas ◽  
Marina Vlasova ◽  
Pedro Antonio Márquez Aguilar ◽  
Mykola Kakazey ◽  
Marcos Mauricio Chávez Cano ◽  
...  

AbstractThe low-temperature synthesis of bricks prepared from high-siliceous clays by the method of plastic molding of blanks was used. For the preparation of brick blanks, binary and ternary mixtures of high-siliceous clays, black sand, and bottle glass cullet were used. Gray-black low-porosity and high-porosity ceramics was obtained by sintering under conditions of oxygen deficiency. It has been established that to initiate plastic in mixtures containing high-siliceous clay, it is necessary to add montmorillonite/bentonite additives, carry out low-temperature sintering, and introduce low-melting glass additives with a melting point ranging from 750 to 800 °C. The performed investigations have shown that the sintering of mixtures with a total content of iron oxide of about 5 wt% under reducing conditions at Tsint. = 800°C for 8 h leads to the formation of glass ceramics consisting of quartz, feldspars, and a phase. The main sources of the appearance of a dark color is the formation of [Fe3+O4]4- and [Fe3+O6]9- anions in the composition of the glass phase and feldspars. By changing the contents of clay, sand, and glass in sintering, it is possible to obtain two types of ceramic materials: (a) in the form of building bricks and (b) in the form of porous fillers.


2020 ◽  
Vol 14 (2) ◽  
pp. 15
Author(s):  
Zaidah Zainal ariffin

Fungi is known to produce a wide range of biologically active metabolites and enzymes. Enzymes produced by fungi are utilized in food and pharmaceutical industries because of their rich enzymatic profile. Filamentous fungi are particularly interesting due to their high production of extracellular enzymes which has a large industrial potential. The aim of this study is to isolate potential soil fungi species that are able to produce functional enzymes for industries. Five Aspergillus species were successfully isolated from antibiotic overexposed soil (GPS coordinate of N3.093219 E101.40269) by standard microbiological method. The isolated fungi were identified via morphological observations and molecular tools; polymerase chain reactions, ITS 1 (5’- TCC GTA GGT GAA CCT GCG G3’) forward primer and ITS 4 (5’-TCC TCC GCT TAT TGA TAT GC-3’) reverse primer. The isolated fungi were identified as Aspergillus sydowii strain SCAU066, Aspergillus tamarii isolate TN-7, Aspergillus candidus strain KUFA 0062, Aspergillus versicolor isolate BAB-6580, and Aspergillus protuberus strain KAS 6024. Supernatant obtained via submerged fermentation of the isolated fungi in potato dextrose broth (PDB) and extracted via centrifugation was loaded onto specific media to screen for the production of xylanolytic, cellulolytic and amylolytic enzymes. The present findings indicate that Aspergillus sydowii strain SCAU066 and Aspergillus versicolor isolate BAB-6580 have great potential as an alternative source of xylanolytic, cellulolytic and amylolytic enzymes.


Biomics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 389-393
Author(s):  
D.V. Mitrofanov ◽  
N.V. Budnikova

The drone brood contains a large number of substances with antioxidant activity. These substances require stabilization and strict adherence to storage conditions. Among these substances are unique decenoic acids, the content of which is an indicator of the quality of drone brood and products based on it. The ability of drone brood to reduce the manifestations of oxidative stress is shown. There are dietary supplements for food and drugs based on drone brood, which are used for a wide range of diseases. Together with drone brood, chitosan-containing products, propolis, royal jelly can be used. They enrich the composition with their own biologically active substances and affect the preservation of the biologically active substances of the drone brood. Promising are the products containing, in addition to the drone brood, a chitin-chitosan-melanin complex from bees, propolis, royal jelly. The chitin-chitosan-melanin complex in the amount of 5% in the composition of the adsorbent practically does not affect the preservation of decenic acids, while in the amount of 2% and 10% it somewhat worsens. The acid-soluble and water-soluble chitosan of marine crustaceans significantly worsens the preservation of decenoic acids in the product. Drone brood with royal jelly demonstrates a rather high content of decenoic acids. When propolis is introduced into the composition of the product, the content of decenoic acids increases according to the content of propolis.


2019 ◽  
Vol 26 (23) ◽  
pp. 4323-4354 ◽  
Author(s):  
Ana Cristina Lima Leite ◽  
José Wanderlan Pontes Espíndola ◽  
Marcos Veríssimo de Oliveira Cardoso ◽  
Gevanio Bezerra de Oliveira Filho

Background: Privileged motifs are recurring in a wide range of biologically active compounds that reach different pharmaceutical targets and pathways and could represent a suitable start point to access potential candidates in the neglected diseases field. The current therapies to treat these diseases are based in drugs that lack of the desired effectiveness, affordable methods of synthesis and allow a way to emergence of resistant strains. Due the lack of financial return, only few pharmaceutical companies have been investing in research for new therapeutics for neglected diseases (ND). Methods: Based on the literature search from 2002 to 2016, we discuss how six privileged motifs, focusing phthalimide, isatin, indole, thiosemicarbazone, thiazole, and thiazolidinone are particularly recurrent in compounds active against some of neglected diseases. Results: It was observed that attention was paid particularly for Chagas disease, malaria, tuberculosis, schistosomiasis, leishmaniasis, dengue, African sleeping sickness (Human African Trypanosomiasis - HAT) and toxoplasmosis. It was possible to verify that, among the ND, antitrypanosomal and antiplasmodial activities were between the most searched. Besides, thiosemicarbazone moiety seems to be the most versatile and frequently explored scaffold. As well, phthalimide, isatin, thiazole, and thiazolidone nucleus have been also explored in the ND field. Conclusion: Some described compounds, appear to be promising drug candidates, while others could represent a valuable inspiration in the research for new lead compounds.


2020 ◽  
Vol 27 (6) ◽  
pp. 838-853 ◽  
Author(s):  
Madalina Icriverzi ◽  
Valentina Dinca ◽  
Magdalena Moisei ◽  
Robert W. Evans ◽  
Mihaela Trif ◽  
...  

: Among the multiple properties exhibited by lactoferrin (Lf), its involvement in bone regeneration processes is of great interest at the present time. A series of in vitro and in vivo studies have revealed the ability of Lf to promote survival, proliferation and differentiation of osteoblast cells and to inhibit bone resorption mediated by osteoclasts. Although the mechanism underlying the action of Lf in bone cells is still not fully elucidated, it has been shown that its mode of action leading to the survival of osteoblasts is complemented by its mitogenic effect. Activation of several signalling pathways and gene expression, in an LRPdependent or independent manner, has been identified. Unlike the effects on osteoblasts, the action on osteoclasts is different, with Lf leading to a total arrest of osteoclastogenesis. : Due to the positive effect of Lf on osteoblasts, the potential use of Lf alone or in combination with different biologically active compounds in bone tissue regeneration and the treatment of bone diseases is of great interest. Since the bioavailability of Lf in vivo is poor, a nanotechnology- based strategy to improve the biological properties of Lf was developed. The investigated formulations include incorporation of Lf into collagen membranes, gelatin hydrogel, liposomes, loading onto nanofibers, porous microspheres, or coating onto silica/titan based implants. Lf has also been coupled with other biologically active compounds such as biomimetic hydroxyapatite, in order to improve the efficacy of biomaterials used in the regulation of bone homeostasis. : This review aims to provide an up-to-date review of research on the involvement of Lf in bone growth and healing and on its use as a potential therapeutic factor in bone tissue regeneration.


2020 ◽  
Vol 26 (27) ◽  
pp. 3234-3250
Author(s):  
Sushil K. Kashaw ◽  
Prashant Sahu ◽  
Vaibhav Rajoriya ◽  
Pradeep Jana ◽  
Varsha Kashaw ◽  
...  

Potential short interfering RNAs (siRNA) modulating gene expression have emerged as a novel therapeutic arsenal against a wide range of maladies and disorders containing cancer, viral infections, bacterial ailments and metabolic snags at the molecular level. Nanogel, in the current medicinal era, displayed a comprehensive range of significant drug delivery prospects. Biodegradation, swelling and de-swelling tendency, pHsensitive drug release and thermo-sensitivity are some of the renowned associated benefits of nanogel drug delivery system. Global researches have also showed that nanogel system significantly targets and delivers the biomolecules including DNAs, siRNA, protein, peptides and other biologically active molecules. Biomolecules delivery via nanogel system explored a wide range of pharmaceutical, biomedical engineering and agro-medicinal application. The siRNAs and DNAs delivery plays a vivacious role by addressing the hitches allied with chronic and contemporary therapeutic like generic possession and low constancy. They also incite release kinetics approach from slow-release while mingling to rapid release at the targets will be beneficial as interference RNAs delivery carriers. Therefore, in this research, we focused on the latest improvements in the delivery of siRNA loaded nanogels by enhancing the absorption, stability, sensitivity and combating the hindrances in cellular trafficking and release process.


2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


2020 ◽  
Vol 21 (24) ◽  
pp. 9769
Author(s):  
Saaya Koike ◽  
Kenshi Yamasaki

The epidermis is located in the outermost layer of the living body and is the place where external stimuli such as ultraviolet rays and microorganisms first come into contact. Melanocytes and melanin play a wide range of roles such as adsorption of metals, thermoregulation, and protection from foreign enemies by camouflage. Pigmentary disorders are observed in diseases associated with immunodeficiency such as Griscelli syndrome, indicating molecular sharing between immune systems and the machineries of pigment formation. Melanocytes express functional toll-like receptors (TLRs), and innate immune stimulation via TLRs affects melanin synthesis and melanosome transport to modulate skin pigmentation. TLR2 enhances melanogenetic gene expression to augment melanogenesis. In contrast, TLR3 increases melanosome transport to transfer to keratinocytes through Rab27A, the responsible molecule of Griscelli syndrome. TLR4 and TLR9 enhance tyrosinase expression and melanogenesis through p38 MAPK (mitogen-activated protein kinase) and NFκB signaling pathway, respectively. TLR7 suppresses microphthalmia-associated transcription factor (MITF), and MITF reduction leads to melanocyte apoptosis. Accumulating knowledge of the TLRs function of melanocytes has enlightened the link between melanogenesis and innate immune system.


Sign in / Sign up

Export Citation Format

Share Document