scholarly journals In Vitro Effect of Plant Parts Extract of Senecio glaucus L. on Pathogenic Bacteria

2021 ◽  
Vol 12 (3) ◽  
pp. 3800-3810

Senecio glaucus L. is an annual herb that grows in several Egyptian desert habitats. The diversity of habitats inhabited by this species, as well as its distribution, chemical composition, and biological activity, are all unknown. This research aimed to examine the chemical composition of S. glaucus from various environments in Egypt, as well as the antioxidant and antimicrobial activities. The general assessment of the analytical results for different parts of S. glaucus showed that the capitula and leaves in both inland and coastal samples were rich in bioactive constituents than the other parts as following (capitula > leaf > root > stem). Based on the results of IC50, the antioxidant properties of the eight parts of two samples follows the sequence capitula ˃ root ˃ leaf ˃ stem for the coastal sample, and capitula ˃ leaf ˃ stem ˃ root for the inland sample. The IC50 values ranged from 25.94 to 41.20 mg/ml in coastal sample, where the IC50 values ranged from 28.02 to 42.83 mg/ml in desert sample, compared to ascorbic acid (IC50 = 13.30 mg/ml). The antimicrobial potential of MeOH extracts of S. glaucus parts collected from different habitats exhibited different inhibitory spectrum behavior with varying degrees of inhibition against six Gram-positive bacteria and four Gram-negative bacteria. In both coastal and inland samples, the E. coli inhibition zone was the most susceptible bacterium. Whereas, in the case of the coastal sample, the inhibition zone of B. subtilis was the most sensitive bacterium. The results of the antibacterial test were compared with 3 standard antibiotics.

Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 482 ◽  
Author(s):  
Ahmed M. Abd-ElGawad ◽  
Abdelsamed I. Elshamy ◽  
Saud L. Al-Rowaily ◽  
Yasser A. El-Amier

The variation in habitat has a direct effect on the plants and as a consequence, changes their content of the bioactive constituents and biological activities. The present study aimed to explore the variation in the essential oils (EOs) and phenolics of Heliotropium curassavicum collected from the coastal and inland habitats. Additionally, we determined their antioxidant and allelopathic activity against the weed, Chenopodium murale. Fifty-six compounds were identified as overall from EOs, from which 25 components were identified from the coastal sample, and 52 from the inland one. Sesquiterpenes were the main class in both samples (81.67% and 79.28%), while mono (3.99% and 7.21%) and diterpenes (2.9% and 1.77%) represented minors, respectively. Hexahydrofarnesyl acetone, (-)-caryophyllene oxide, farnesyl acetone, humulene oxide, farnesyl acetone C, and nerolidol epoxy acetate were identified as major compounds. The HPLC analysis of MeOH extracts of the two samples showed that chlorogenic acid, rutin, and propyl gallate are major compounds in the coastal sample, while vanilin, quercetin, and 4′,7-dihydroxyisoflavone are majors in the inland one. The EOs showed considerable phytotoxicity against C. murale with IC50 value of 2.66, 0.59, and 0.70 mg mL−1 for germination, root, and shoot growth, respectively from the inland sample. While the coastal sample attained the IC50 values of 1.58, 0.45, and 0.66 mg mL−1. MeOH extracts revealed stronger antioxidant activity compared to the EOs. Based on IC50 values, the ascorbic acid revealed 3-fold of the antioxidant compared to the EO of the coastal sample and 4-fold regarding the inland sample. However, the ascorbic acid showed 3-fold of the antioxidant activity of the MeOH extracts of coastal and inland samples. Although H. curassavicum is considered as a noxious, invasive plant, the present study revealed that EO and MeOH extracts of the H. curassavicum could be considered as promising, eco-friendly, natural resources for antioxidants as well as weed control, particularly against the weed, C. murale.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Safia Boulechfar ◽  
Amar Zellagui ◽  
Meltem Asan-Ozusaglam ◽  
Chawki Bensouici ◽  
Ramazan Erenler ◽  
...  

Abstract This study aims to investigate the chemical composition, antioxidant, and antimicrobial activity of two essential oils (EOs) from Algerian propolis. The volatile constituents were analyzed by gas chromatography-mass spectrometry. Fifty components were identified from the oils. The major components were found to be: cedrol (17.0%), β-eudesmol (7.7%), and α-eudesmol (6.7%) in EO of propolis from Oum El Bouaghi (EOPO) whilst α-pinene (56.1%), cis-verbenol (6.0%), and cyclohexene,3-acetoxy-4-(1-hydroxy-1-methylethyl)-1-methyl (4.4%) in EO of propolis from Batna (EOPB). The antioxidant properties of EOPO and EOPB were determined using 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS•+) and cupric reducing antioxidant capacity (CUPRAC assays), respectively. Both EOs had more cupric ion reducing ability than scavenging ABTS•+ radicals. The antimicrobial potential of the two EOs against eight pathogens was assayed by the agar diffusion method and the mode of action was determined by microdilution assay. The results revealed that EOPB was bactericidal for all tested pathogenic bacteria and fungicidal for Candida albicans ATCC 10231, whereas, EOPO showed bacteriostatic effect against Escherichia coli O157:H7 and Pseudomonas aeruginosa ATCC27853 and fungistatic effect against C. albicans ATCC 10231. Thus, the obtained results suggest the important use of propolis EOs as preservative agents.


2017 ◽  
Vol 13 (33) ◽  
pp. 364 ◽  
Author(s):  
Andrianantenaina Rigobert ◽  
Ralambondrahety Rahanira ◽  
Andriambeloson Onja ◽  
Rabehaja Delphin ◽  
Ralamboranto Laurence ◽  
...  

Plants constitute an important source of secondary metabolites in which essential oils are well-known for their use in various domains such as pharmacy, therapeutic, cosmetology and foods. In vitro antimicrobial and antioxidant properties of Ocotea auriculiformis Kost. (Lauraceae) leaves essential oil is demonstrated and its chemical composition is reported in the present study. The essential oil from Ocotea auriculiformis Kost. (Lauraceae) leaves, an endemic plant of Madagascar was extracted by hydrodistillation method. Chemical composition using GC, GC/ MS and NMR13C methods showed that the essential oil contained around 47 products in which 93.95% were identified. Known compounds are constituted by 74.7% of hydrocarbons and 19.25% of oxygenated products. The essential oil is rich in sesquiterpene and monoterpene. In vitro antibacterial capacity of the essential oil was assessed by disc method against human and food pathogens. Bacillus cereus and Streptococcus pneumoniae were very sensitive to the essential oil with 11 mm and 25 mm of inhibition zone respectively. The MIC of the essential oil was 1mg/mL for Bacillus cereus and 0.25 mg/mL for Streptococcus pneumoniae. MBC values were 2.5 mg/mL and 0.5 mg/mL, respectively. The ratio MBC/MIC for both strains was inferior to 4 concluding hence that the essential oil has bactericidal effect against the two sensitive strains. In vitro antioxidant capacity of the essential oil was performed according to qualitalive (TLC) and quantitative (measure of DPPH radical scavengening) methods. The essential oil showed antioxidant activity with IC50 value of 0.35 mg/mL.


2019 ◽  
Vol 10 (1) ◽  
pp. 47-51
Author(s):  
Najme Bagheri ◽  
Niloofar Safaei ◽  
Elahe Aleebrahim-Dehkordy ◽  
Mansoor Khaledi ◽  
Mostafa Madmoli ◽  
...  

Introduction: Using antibiotics to control pathogenic bacteria is associated with certain side effects in addition to emergence of drug resistance. Nowadays, researchers are considering using plants as suitable alternatives to antibiotics. The aim of study was to compare in vitro antimicrobial activities of aqueous and hydroalcoholic Bunium persicum and Rheum ribes L. extracts on Acinetobacter baumanii. Materials and methods: Different concentrations of R. ribes and B. persicum were prepared to determine microbial sensitivity of A. baumanii using disk diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). Results: The highest MIC (256 µg/ml) against A. baumanii was derived for aqueous R. ribes and B. persicum extracts and the lowest MIC (128 µg/ml) for their hydroalcoholic extracts. The highest MBC (512 µg/ml) was derived for aqueous R. ribes extract and the lowest MBC (256 µg/ml) for aqueous and hydroalcoholic R. ribes and B. persicum and hydroalcoholic R. ribes extracts. The extracts exhibited great inhibitory effects against the studied bacteria in disk diffusion; and with increasing the extracts’ concentrations, the inhibitory effect was exhibited more markedly as increased diameter of inhibition zone. Conclusion: Hydroalcoholic R. ribes and B. persicum extracts can be used as nature-based compounds to control A. baumanii.  


2020 ◽  
Vol 49 (4) ◽  
pp. 957-965
Author(s):  
Omer Elkiran ◽  
Cumhur Avsar

The chemical composition, antimicrobial and antioxidant properties of the essential oils from the leaves of endemic Thymus leucostomus naturally grown in Turkey were investigated and chemical differences were discussed by means of chemotaxonomy. Twenty-six components were identified representing 98.8% of the oils. The main compounds in the essential oil of T. leucostomus were: o-cymene (30.6%), carvacrol (9.6%), thymol methyl ether (7.2%), limonene (6.8%). Essential oil was screened for their antimicrobial activities against 7 bacteria and 2 yeast species by using disc-diffusion and MIC procedure. The essential oil showed higher effectiveness against all the tested bacteria and yeast. The extract was observed to be much more effective in Gram-positive bacteria (especially, S. aureus ATCC 6538). In vitro antioxidant activity based on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical was evaluated for the essential oil, and it was found that the essential oil had good antioxidant activity in the range of the IC50= 5.42 ±0.8 μg/ml.


2021 ◽  
pp. 11-22
Author(s):  
SC Tasneem ◽  
J Ferdous ◽  
MZH Bulbul ◽  
MMH Misbah ◽  
D Sujan ◽  
...  

The principal cause of human deaths in the world is primarily due to harmful pathogenic microbes as bacteria, a virus, and fungi. Searching for antimicrobial agents to prevent deaths with new structures and modes of action is an essential strategy of the research. Therefore, in the present study has been undertaken of thymidine and of its eleven acylated derivatives were employed as test chemicals for in vitro antibacterial evaluation against five human pathogenic bacteria. The compounds were also screened for antifungal functionality tests against two phytopathogenic fungi. It was observed that a good number of tested compounds exhibited moderate to good antimicrobial activities. It was also observed that these acylated compounds were more effective against the phytopathogenic fungi than those of the bacterial strains. Encouragingly, several tested chemicals showed better antibacterial and antifungal activities than the standard antibiotics employed. The minimum inhibition concentration (MIC) values of the compounds 3 (5´-O-butyrylthymidine), 7 (5´-O-palmitoylthymidine) and 12 (5´-O-4- dichloroacetylthymidine) were found to be 0.32 mg/ml and minimum bactericidal concentrations (MBC) values were found to be 0.63 mg /ml in each case. On the other hand, the minimum fungal concentration (MFC) was found to be (1.25 mg/ml) in the case of compound 7 (i.e., palmitoyl derivative) which may be used as antifungal active drug providing further investigation. In vitro MTT assays revealed that compounds 4 (5´-O-hexanoylthymidine) and 7 (5´-O-palmitoylthymidine) were effective against Ehrlich’s ascites carcinoma (EAC) cells and IC50 values were found to be 920.88 μg/ml and 792.90 μg/ml, respectively. So these compounds may be targeted for future studies for their usage as broad-spectrum antibiotics. J. Bio-Sci. 29(1): 11-22, 2021 (June)


2020 ◽  
Vol 49 (1) ◽  
pp. 91-96
Author(s):  
Omer Elkiran ◽  
Cumhur Avşar

The chemical composition, antimicrobial and antioxidant properties of the essential oil (EO), obtained from the leaves of Vaccinium myrtillus naturally grown in the northernmost of Turkey were determined by GC and GC-MS and chemical differences were discussed with the help of chemotaxonomy. The leaves of the plant samples were hydro-distilled to produce oil in the yields of 1%. Nineteen components were identified representing 96.4% of the oil. The main compounds in the EO of V. myrtillus were; 1,8-cineole (38.6%), α- pinene (21%), linalool (19.5%), α-terpineol (5.8%). The EO extract was screened for their antimicrobial activities against the 9 bacteria and 3 yeast species by using disc-diffusion and MIC procedure. The EO extract displayed more effective against all the tested bacteria (especially, S. aureus ATCC 6538 and MRSA) and yeast (only C. krusei). The MIC values of sample against tested microorganisms were found to be in the range of 320 to ≥1280 μg/ml. The most effective MIC values were observed against the S. aureus and MRSA (320 μg/ml). In vitro the antioxidant activity based on the 1,1-diphenly-2-picrylhydrazyl (DPPH) free radical was evaluated for the EO extract, and it was found that the extract had good antioxidant activity in the range of the IC50 = 583.4 ±11 μg ml. Antibacterial and antioxidant activities of the EO from the leaves of V. myrtillus has been reported for the first time.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 918
Author(s):  
Nóra Emilia Nagybákay ◽  
Michail Syrpas ◽  
Vaiva Vilimaitė ◽  
Laura Tamkutė ◽  
Audrius Pukalskas ◽  
...  

The article presents the optimization of supercritical CO2 extraction (SFE-CO2) parameters using response surface methodology (RSM) with central composite design (CCD) in order to produce single variety hop (cv. Ella) extracts with high yield and strong in vitro antioxidant properties. Optimized SFE-CO2 (37 MPa, 43 °C, 80 min) yielded 26.3 g/100 g pellets of lipophilic fraction. This extract was rich in biologically active α- and β-bitter acids (522.8 and 345.0 mg/g extract, respectively), and exerted 1481 mg TE/g extract in vitro oxygen radical absorbance capacity (ORAC). Up to ~3-fold higher extraction yield, antioxidant recovery (389.8 mg TE/g pellets) and exhaustive bitter acid extraction (228.4 mg/g pellets) were achieved under the significantly shorter time compared to the commercially used one-stage SFE-CO2 at 10–15 MPa and 40 °C. Total carotenoid and chlorophyll content was negligible, amounting to <0.04% of the total extract mass. Fruity, herbal, spicy and woody odor of extracts could be attributed to the major identified volatiles, namely β-pinene, β-myrcene, β-humulene, α-humulene, α-selinene and methyl-4-decenoate. Rich in valuable bioactive constituents and flavor compounds, cv. Ella hop SFE-CO2 extracts could find multipurpose applications in food, pharmaceutical, nutraceutical and cosmetics industries.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1081
Author(s):  
Matilda Rădulescu ◽  
Călin Jianu ◽  
Alexandra Teodora Lukinich-Gruia ◽  
Marius Mioc ◽  
Alexandra Mioc ◽  
...  

The investigation aimed to study the in vitro and in silico antioxidant properties of Melissa officinalis subsp. officinalis essential oil (MOEO). The chemical composition of MOEO was determined using GC–MS analysis. Among 36 compounds identified in MOEO, the main were beta-cubebene (27.66%), beta-caryophyllene (27.41%), alpha-cadinene (4.72%), caryophyllene oxide (4.09%), and alpha-cadinol (4.07%), respectively. In vitro antioxidant properties of MOEO have been studied in 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging, and inhibition of β-carotene bleaching assays. The half-maximal inhibitory concentration (IC50) for the radical scavenging abilities of ABTS and DPPH were 1.225 ± 0.011 μg/mL and 14.015 ± 0.027 μg/mL, respectively, demonstrating good antioxidant activity. Moreover, MOEO exhibited a strong inhibitory effect (94.031 ± 0.082%) in the β-carotene bleaching assay by neutralizing hydroperoxides, responsible for the oxidation of highly unsaturated β-carotene. Furthermore, molecular docking showed that the MOEO components could exert an in vitro antioxidant activity through xanthine oxidoreductase inhibition. The most active structures are minor MOEO components (approximately 6%), among which the highest affinity for the target protein belongs to carvacrol.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 703
Author(s):  
Severino Zara ◽  
Giacomo L. Petretto ◽  
Alberto Mannu ◽  
Giacomo Zara ◽  
Marilena Budroni ◽  
...  

The production of saffron spice generates large quantities of plant by-products: over 90% of the plant material collected is discarded, and a consideration fraction of this waste is plant stamens. This work investigated the chemical composition and the antimicrobial activities of the non-polar fraction extracted from four different saffron flower stamens. The chemical composition of ethereal extracts of the saffron stamens was qualitatively assessed by means of gas–chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) analyses. These analyses revealed ethereal extracts to possess a high polyunsaturated fatty acid content. In vitro antibacterial activity of stamen extracts showed no large differences between Gram-positive and Gram-negative bacteria in terms of minimal inhibitory concentration (MIC). In food matrix microbial analysis of the bacterial strains belonging to the main foodborne pathogen species, including Staphylococcus aureus DSM 20231, Escherichia coli DSM 30083, and Listeria monocytogenes DSM 20600, using low-fat UHT milk, revealed a statistically significant reduction in the number of cells (particularly for E. coli and S. aureus with a complete elimination of the population of the two target bacteria following incubation in diethyl ether extracts of saffron stamen (DES) at high concentrations tested, both at 37 °C and 6 °C (for 48 h and 7 days, respectively). A synergic effect was observed when the pathogens were incubated at 6 °C with DES. This work shows these by-products to be excellent sources of bioactive compounds, which could be exploited in high-added-value products, such as food, cosmetics, and drugs.


Sign in / Sign up

Export Citation Format

Share Document