scholarly journals Detection of CTX-M-type ESBLs Escherichia coli at Universiti Kebangsaan Malaysia Medical Centre

2016 ◽  
Vol 15 (2) ◽  
pp. 257-261
Author(s):  
Siti Norlia Othman ◽  
Salasawati Hussin ◽  
Ramliza Ramli ◽  
MM Rahman

Objective: To determine ESBLs and CTX-M-type ESBL-producing Escherichia coli at Universiti Kebangsaan Malaysia Medical Centre (UKMMC) by multiplex PCR.Materials and Methods: ESBL producing E. coli strains were confirmed by disk diffusion method. On the contrary, CTX-M-type ESBL-producing E. coli strains were confirmed by multiplex PCR.Results: Out of 554 collected E. coli isolates from UKMMC, 96 of these were detected as ESBL-producers. In 96 isolates, 76 viable strains were subjected to multiplex PCR for the detection of blaCTX genes. In which 70 (92.1%) were CTX-M-type ESBLs with the majority of CTX-M-1 group (77.1%), followed by CTX-M-9 group (21.4%) and one (1.4%) from CTX-M-2 group. Conclusions: CTX-M-type ESBLs were the predominant ESBL types isolated at UKMMC. CTX-M-1 and -9 groups were found in majority of the clinical isolates. Although phenotypic characteristics based on disk diffusion test provided similar results, however, molecular detection of genes of organisms is important for further epidemiological investigations.Bangladesh Journal of Medical Science Vol.15(2) 2016 p.257-261

2011 ◽  
Vol 2 (1) ◽  
pp. 8
Author(s):  
Ronak Bakhtiari ◽  
Jalil Fallah Mehrabadi ◽  
Hedroosha Molla Agamirzaei ◽  
Ailar Sabbaghi ◽  
Mohammad Mehdi Soltan Dallal

Resistance to b-lactam antibiotics by gramnegative bacteria, especially <em>Escherichia coli (E. coli)</em>, is a major public health issue worldwide. The predominant resistance mechanism in gram negative bacteria particularly <em>E. coli </em>is via the production of extended spectrum beta lactamase (ESBLs) enzymes. In recent years, the prevalence of b-lactamase producing organisms is increased and identification of these isolates by using disk diffusion method and no-one else is not satisfactory. So, this investigation focused on evaluating the prevalence of ESBL enzymes by disk diffusion method and confirmatory test (Combined Disk). Five hundred clinical samples were collected and 200 <em>E. coli </em>isolates were detected by standard biochemical tests. To performing initial screening of ESBLs was used from Disk diffusion method on <em>E. coli </em>isolates. A confirmation test (Combined Disk method) was performed on isolates of resistant to cephalosporin's indicators. Up to 70% isolates exhibited the Multi Drug Resistance phenotype. In Disk diffusion method, 128(64%) <em>E. coli </em>isolates which resistant to ceftazidime and cefotaxime while in Combined Disk, among 128 screened isolates, 115 (89.8%) isolates were detected as ESBLs producers. This survey indicate beta lactamase enzymes are playing a significant role in antibiotic resistance and correct detection of them in phenotypic test by using disk diffusion and combined Disk is essential for accurate recognition of ESBLs.


2020 ◽  
Vol 13 (2) ◽  
pp. 290-295
Author(s):  
Meki Boutaiba Benklaouz ◽  
Hebib Aggad ◽  
Qada Benameur

Background and Aim: Escherichia coli can cause a number of serious infections both in human and veterinary medicine. Their management is increasingly complicated by the emergence and dissemination of multiresistance to various first-line antimicrobial agents. This study aimed to evaluate the resistance level to the commonly used antibiotics, with a focus on the first-line antimicrobial agents, in E. coli strains isolated from poultry in Western Algeria. Materials and Methods: E. coli culture was done on MacConkey agar and their identification was determined by AP20E system. For susceptibility testing, disk diffusion method to 14 antimicrobials, including first-line antibiotics, was used according to Kirby–Bauer disk diffusion method in Mueller-Hinton agar and the results were interpreted according to the Clinical and Laboratory Standards Institute guidelines. E. coli isolates were considered as multidrug resistance (MDR) when found resistant to at least one antimicrobial agent of three different families of antibiotics. Double-disk synergy and combination disk tests were used for initial screening and confirmation for extended-spectrum β-lactamases (ESBLs) production, respectively. Results: A total of 145 E. coli strains were isolated in this study. High resistance levels to various antibiotics, including commonly used first-line antimicrobial agents, were recorded in this study. The highest resistance level was observed against nalidixic acid (90.34%, n=131), followed by tetracycline (86.89%, n=126), ampicillin (82.75%, n=120), enrofloxacin (80.68%, n=117) and neomycin (80.68%, n=117), trimethoprim/sulfamethoxazole (73.79%, n=107), norfloxacin (72.41%, n=105) and cephalothin (72.41%, n=105), amoxicillin/clavulanic acid (51.72%, n=75), chloramphenicol (22.75%, n=33), nitrofurantoin (17.24%, n=25), gentamicin (13.10%, n=19), and ceftiofur (3.44%, n=5). Moreover, resistance to multiple first-line antibiotics was also demonstrated in the present study. Overall, 139 out of 145 isolates (95.86%) demonstrated MDR (resistant to at least three antibiotics). In addition, five E. coli isolates (3.44%) were confirmed to be ESBL producers. Conclusion: The alarming rate of E. coli resistant to multiple first-line antibiotics in poultry demands intensified surveillance. These results call for taking drastic measures to preserve antibiotic effectiveness and reduce the emergence risks of extensively drug-resistant and pandrug-resistant E. coli isolates.


Author(s):  
Trinh Van Son ◽  
Nguyen Dang Manh ◽  
Ngo Tat Trung ◽  
Dao Thanh Quyen ◽  
Christian G. Meyer ◽  
...  

Abstract Background Blood stream infections (BSI) caused by Extended Spectrum Beta-Lactamases (ESBLs) producing Enterobacteriaceae is a clinical challenge leading to high mortality, especially in developing countries. In this study, we sought to describe the epidemiology of ESBL-producing Escherichia coli strains isolated from Vietnamese individuals with BSI, to investigate the concordance of genotypic-phenotypic resistance, and clinical outcome of ESBL E. coli BSI. Methods A total of 459 hospitalized patients with BSI were screened between October 2014 and May 2016. 115 E. coli strains from 115 BSI patients were isolated and tested for antibiotic resistance using the VITEK®2 system. The ESBL phenotype was determined by double disk diffusion method following the guideline of Clinical and Laboratory Standards Institute. Screening for beta-lactamase (ESBL and carbapenemase) genes was performed using a multiplex-PCR assay. Results 58% (67/115) of the E. coli strains were ESBL-producers and all were susceptible to both imipenem and meropenem. Resistance to third-generation cephalosporin was common, 70% (81/115) were cefotaxime-resistant and 45% (52/115) were ceftazidime-resistant. blaCTX-M was the most common ESBL gene detected (70%; 80/115) The sensitivity and specificity of blaCTX-M-detection to predict the ESBL phenotype was 87% (76–93% 95% CI) and 54% (39–48% 95% CI), respectively. 28%% (22/80) of blaCTX-M were classified as non-ESBL producers by phenotypic testing for ESBL production. The detection of blaCTX-M in ESBL-negative E. coli BSI was associated with fatal clinical outcome (27%; 6/22 versus 8%; 2/26, p = 0.07). Conclusion A high prevalence of ESBL-producing E. coli isolates harbouring blaCTX-M was observed in BSI patients in Vietnam. The genotypic detection of blaCTX-M may have added benefit in optimizing and guiding empirical antibiotic therapy of E. coli BSI to improve clinical outcome.


Author(s):  
Bence Balázs ◽  
József Bálint Nagy ◽  
Zoltán Tóth ◽  
Fruzsina Nagy ◽  
Sándor Károlyi ◽  
...  

Abstract Multidrug resistance due to the production of extended-spectrum beta-lactamases (ESBLs) is a major problem in human as well as in veterinary medicine. These strains appear in animal and human microbiomes and can be the source of infection both in animal and in human healthcare, in accordance with the One Health theorem. In this study we examined the prevalence of ESBL-producing bacteria in food-producing animals. We collected 100 porcine and 114 poultry samples to examine the prevalence of ESBL producers. Isolates were identified using the MALDI-TOF system and their antibiotic susceptibility was tested using the disk diffusion method. ESBL gene families and phylogroups were detected by polymerase chain reactions. The prevalence of ESBL producers was relatively high in both sample groups: 72 (72.0%) porcine and 39 (34.2%) poultry isolates were ESBL producers. Escherichia coli isolates were chosen for further investigations. The most common ESBL gene was CTX-M-1 (79.3%). Most of the isolates belong to the commensal E. coli phylogroups. The porcine isolates could be divided into three phylogroups, while the distribution of the poultry isolates was more varied. In summary, ESBL-producing bacteria are prevalent in the faecal samples of the examined food-producing animals, with a dominance of the CTX-M-1 group enzymes and commensal E. coli phylogroups.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 262
Author(s):  
Isabel Carvalho ◽  
Nadia Safia Chenouf ◽  
Rita Cunha ◽  
Carla Martins ◽  
Paulo Pimenta ◽  
...  

The aim of the study was to analyze the mechanisms of resistance in extended-spectrum beta-lactamase (ESBL)- and acquired AmpC (qAmpC)-producing Escherichia coli isolates from healthy and sick cats in Portugal. A total of 141 rectal swabs recovered from 98 sick and 43 healthy cats were processed for cefotaxime-resistant (CTXR) E. coli recovery (in MacConkey agar supplemented with 2 µg/mL cefotaxime). The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) method was used for E. coli identification and antimicrobial susceptibility was performed by a disk diffusion test. The presence of resistance/virulence genes was tested by PCR sequencing. The phylogenetic typing and multilocus sequence typing (MLST) were determined by specific PCR sequencing. CTXRE. coli isolates were detected in seven sick and six healthy cats (7.1% and 13.9%, respectively). Based on the synergy tests, 11 of 13 CTXRE. coli isolates (one/sample) were ESBL-producers (ESBL total rate: 7.8%) carrying the following ESBL genes: blaCTX-M-1 (n = 3), blaCTX-M-15 (n = 3), blaCTX-M-55 (n = 2), blaCTX-M-27 (n = 2) and blaCTX-M-9 (n = 1). Six different sequence types were identified among ESBL-producers (sequence type/associated ESBLs): ST847/CTX-M-9, CTX-M-27, CTX-M-1; ST10/CTX-M-15, CTX-M-27; ST6448/CTX-M-15, CTX-M-55; ST429/CTX-M-15; ST101/CTX-M-1 and ST40/CTX-M-1. Three of the CTXR isolates were CMY-2-producers (qAmpC rate: 2.1%); two of them were ESBL-positive and one ESBL-negative. These isolates were typed as ST429 and ST6448 and were obtained in healthy or sick cats. The phylogenetic groups A/B1/D/clade 1 were detected among ESBL- and qAmpC-producing isolates. Cats are carriers of qAmpC (CMY-2)- and ESBL-producing E. coli isolates (mostly of variants of CTX-M group 1) of diverse clonal lineages, which might represent a public health problem due to the proximity of cats with humans regarding a One Health perspective.


2021 ◽  
Vol 9 (2) ◽  
pp. 326
Author(s):  
Frederick Adzitey ◽  
Nurul Huda ◽  
Amir Husni Mohd Shariff

Meat is an important food source that can provide a significant amount of protein for human development. The occurrence of bacteria that are resistant to antimicrobials in meat poses a public health risk. This study evaluated the occurrence and antimicrobial resistance of E. coli (Escherichia coli) isolated from raw meats, ready-to-eat (RTE) meats and their related samples in Ghana. E. coli was isolated using the USA-FDA Bacteriological Analytical Manual and phenotypic antimicrobial susceptibility test was performed by the disk diffusion method. Of the 200 examined meats and their related samples, 38% were positive for E. coli. Notably, E. coli was highest in raw beef (80%) and lowest in RTE pork (0%). The 45 E. coli isolates were resistant ≥ 50% to amoxicillin, trimethoprim and tetracycline. They were susceptible to azithromycin (87.1%), chloramphenicol (81.3%), imipenem (74.8%), gentamicin (72.0%) and ciprofloxacin (69.5%). A relatively high intermediate resistance of 33.0% was observed for ceftriaxone. E. coli from raw meats, RTE meats, hands of meat sellers and working tools showed some differences and similarities in their phenotypic antimicrobial resistance patterns. Half (51.1%) of the E. coli isolates exhibited multidrug resistance. The E. coli isolates showed twenty-two different resistant patterns, with a multiple antibiotic resistance index of 0.0 to 0.7. The resistant pattern amoxicillin (A, n = 6 isolates) and amoxicillin-trimethoprim (A-TM, n = 6 isolates) were the most common. This study documents that raw meats, RTE meats and their related samples in Ghana are potential sources of antimicrobial-resistant E. coli and pose a risk for the transfer of resistant bacteria to the food chain, environment and humans.


2007 ◽  
Vol 59 (2) ◽  
pp. 508-512 ◽  
Author(s):  
B.R. Paneto ◽  
R.P. Schocken-Iturrino ◽  
C. Macedo ◽  
E. Santo ◽  
J.M. Marin

The occurrence of toxigenic Escherichia coli in raw milk cheese was surveyed in Middle Western Brazil. Fifty samples of cheese from different supermarkets were analyzed for E.coli. The isolates were serotyped and screened for the presence of verotoxigenic E. coli (VTEC) and enterotoxigenic E. coli (ETEC) by Polymerase Chain Reaction (PCR). The susceptibility to thirteen antimicrobial agents was evaluated by the disk diffusion method. E.coli were recovered from 48 (96.0%) of the samples. The serogroups identified were O125 (6.0%), O111 (4.0%), O55 (2.0%) and O119 (2.0%). Three (6.0%) and 1(2.0%) of the E.coli isolates were VTEC and ETEC, respectively. Most frequent resistance was observed to the following antimicrobials: cephalothin (60.0%), nalidixic acid (40.0%), doxycyclin (33.0%), tetracycline (31.0%) and ampicillin (29.0%).


2019 ◽  
Vol 6 (1) ◽  
pp. e000369 ◽  
Author(s):  
Magdalena Nüesch-Inderbinen ◽  
Nadine Käppeli ◽  
Marina Morach ◽  
Corinne Eicher ◽  
Sabrina Corti ◽  
...  

BackgroundEscherichia coli is an important aetiological agent of bovine mastitis worldwide.MethodsIn this study, 82 E. coli from bovine mastitis milk samples from 49 farms were analysed for their genetic diversity using phylogenetic grouping and multilocus sequence typing. The isolates were examined by PCR for a selection of virulence factors (VFs). Antimicrobial susceptibility profiles were assessed using the disk diffusion method.ResultsThe most prevalent phylogroups were group B1 (41.5 per cent of the isolates) and group A (30.5 per cent). A variety of 35 different sequence types (STs) were identified, including ST1125 (11 per cent), ST58 (9.8 per cent), ST10 (8.5 per cent) and ST88 (7.3 per cent). Aggregate VF scores (the number of unique VFs detected for each isolate) ranged from 1 to 3 for 63.4 per cent of the isolates and were at least 4 for 12.2 per cent. For 24.4 per cent of the isolates, the score was 0. The three most frequent VFs were traT, fyuA and iutA. The majority (72 per cent) of the isolates harboured traT. The majority (68.3 per cent) of the isolates were fully susceptible to all antimicrobials tested, with 22 per cent resistant to ampicillin and 14.6 per cent to tetracycline. Resistance rates were low for gentamicin (3.7 per cent), amoxicillin/clavulanic acid (2.4 per cent) and ceftiofur (1.2 per cent), respectively.ConclusionAmong the study’s sample population, E. coli strains were genotypically diverse, even in cows from the same farm, although some STs occurred more frequently than others. Susceptibility to clinically relevant compounds remained high.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 396 ◽  
Author(s):  
Michaela Sannettha van den Honert ◽  
Pieter Andries Gouws ◽  
Louwrens Christiaan Hoffman

Studies have shown that antibiotic resistance among wild animals is becoming a public health concern, owing to increased contact and co-habitation with domestic animals that, in turn, results in increased human contact, indirectly and directly. This type of farming practice intensifies the likelihood of antibiotic resistant traits in microorganisms transferring between ecosystems which are linked via various transfer vectors, such as rivers and birds. This study aimed to determine whether the practice of wildlife supplementary feeding could have an influence on the antibiotic resistance of the bacteria harboured by the supplementary fed wildlife, and thus play a potential role in the dissemination of antibiotic resistance throughout nature. Escherichia coli and Enterococcus were isolated from the faeces of various wildlife species from seven different farms across South Africa. The Kirby-Bauer disk diffusion method was used according to the Clinical and Laboratory Standards Institute 2018 guidelines. The E. coli (F: 57%; N = 75% susceptible) and Enterococcus (F: 67%; N = 78% susceptible) isolates from the supplementary fed (F) wildlife were in general, found to be more frequently resistant to the selection of antibiotics than from those which were not supplementary fed (N), particularly towards tetracycline (E. coli F: 56%; N: 71%/Enterococcus F: 53%; N: 89% susceptible), ampicillin (F: 82%; N = 95% susceptible) and sulphafurazole (F: 68%; N = 98% susceptible). Interestingly, high resistance towards streptomycin was observed in the bacteria from both the supplementary fed (7% susceptible) and non-supplementary fed (6% susceptible) wildlife isolates. No resistance was found towards chloramphenicol and ceftazidime.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2103
Author(s):  
Elmer Gastelo ◽  
Juan Montes de Oca ◽  
Edward Carpio ◽  
Juan Espinoza ◽  
Pilar García ◽  
...  

This paper focuses on the synthesis of cobalt ferrite nanoparticles by the sol–gel method and their photocatalytic activity to eliminate bacteria in aqueous media at two different scales: in a laboratory reactor and a solar pilot plant. Cobalt ferrite nanoparticles were prepared using Co(II) and Fe(II) salts as precursors and cetyltrimethyl ammonium bromide as a surfactant. The obtained nanoparticles were characterized by X-ray diffraction, scanning and transmission electron microscopy. Escherichia coli (E. coli) strain ATCC 22922 was used as model bacteria for contact biocidal analysis carried out by disk diffusion method and photocatalysis under an ultraviolet A (UV-A) lamp for laboratory analysis and solar radiation (radiation below 350 W/m2 in a typical cloudy day) for the pilot plant analysis. The results showed that cobalt ferrite nanoparticles have an average diameter of (36 ± 20) nm and the X-ray diffraction pattern shows a cubic spinel structure. Using the disk diffusion technique, it was obtained inhibition zones of (17 ± 2) mm diameter. Results confirm the photocatalytic elimination of E. coli in water samples with remaining bacteria below 1% of the initial concentration during the experiment time (30 min for laboratory tests and 1.5 h for pilot plant tests).


Sign in / Sign up

Export Citation Format

Share Document