scholarly journals Immunogenicity of Exosomes from Dendritic Cells Stimulated with Toxoplasma gondii Lysates in Ocularly Immunized Mice

2020 ◽  
Vol 58 (2) ◽  
pp. 185-189
Author(s):  
Bong-Kwang Jung ◽  
Eun-Do Kim ◽  
Hyemi Song ◽  
Jong-Yil Chai ◽  
Kyoung Yul Seo

Immunogenicity of dendritic cell-derived exosomes stimulated with <i>Toxoplasma gondii</i> lysates (TLA exo), mixed with cholera toxin as an adjuvant, was investigated in mice immunized via 2 mucosal routes (ocular vs intranasal). BALB/c mice were injected 3 times with TLA exo vaccine at 2 week interval, and the levels of IgG in serum and IgA in tear, saliva, feces, and vaginal wash were measured. To observe the expression of <i>T. gondii</i>-specific B1 gene, mice infected with ME49 <i>T. gondii</i> cysts were immunized with TLA exo or PBS exo (not stimulated with TLA), and their brain tissues were examined. The mice vaccinated via intranasal route elicited significantly higher humoral and mucosal immune responses compared with mice treated with PBS alone. Also, mice immunized via ocular route (by eyedrop) induced significantly higher <i>T. gondii</i>-specific IgG in serum and IgA in tear and feces in comparison with PBS controls. B1 gene expression was significantly lower in TLA exo vaccinated mice than in PBS or PBS exo vaccinated mice. These results demonstrated that ocular immunization of mice with TLA exo vaccine has the potential to stimulate systemic or local antibody responses. This study also highlighted an advantage of an eyedrop vaccine as an alternative for <i>T. gondii</i> intranasal vaccines.

Author(s):  
Meng Feng ◽  
Shuping Zhou ◽  
Yong Yu ◽  
Qinghong Su ◽  
Xiaofan Li ◽  
...  

Dendritic cells (DCs), a class of antigen-presenting cells, are widely present in tissues and apparatuses of the body, and their ability to migrate is key for the initiation of immune activation and tolerogenic immune responses. The importance of DCs migration for their differentiation, phenotypic states, and immunologic functions has attracted widespread attention. In this review, we discussed and compared the chemokines, membrane molecules, and migration patterns of conventional DCs, plasmocytoid DCs, and recently proposed DC subgroups. We also review the promoters and inhibitors that affect DCs migration, including the hypoxia microenvironment, tumor microenvironment, inflammatory factors, and pathogenic microorganisms. Further understanding of the migration mechanisms and regulatory factors of DC subgroups provides new insights for the treatment of diseases, such as infection, tumors, and vaccine preparation.


Vaccines ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Muktha S. Natrajan ◽  
Nadine Rouphael ◽  
Lilin Lai ◽  
Dmitri Kazmin ◽  
Travis L. Jensen ◽  
...  

Background: Tularemia is a potential biological weapon due to its high infectivity and ease of dissemination. This study aimed to characterize the innate and adaptive responses induced by two different lots of a live attenuated tularemia vaccine and compare them to other well-characterized viral vaccine immune responses. Methods: Microarray analyses were performed on human peripheral blood mononuclear cells (PBMCs) to determine changes in transcriptional activity that correlated with changes detected by cellular phenotyping, cytokine signaling, and serological assays. Transcriptional profiles after tularemia vaccination were compared with yellow fever [YF-17D], inactivated [TIV], and live attenuated [LAIV] influenza. Results: Tularemia vaccine lots produced strong innate immune responses by Day 2 after vaccination, with an increase in monocytes, NK cells, and cytokine signaling. T cell responses peaked at Day 14. Changes in gene expression, including upregulation of STAT1, GBP1, and IFIT2, predicted tularemia-specific antibody responses. Changes in CCL20 expression positively correlated with peak CD8+ T cell responses, but negatively correlated with peak CD4+ T cell activation. Tularemia vaccines elicited gene expression signatures similar to other replicating vaccines, inducing early upregulation of interferon-inducible genes. Conclusions: A systems vaccinology approach identified that tularemia vaccines induce a strong innate immune response early after vaccination, similar to the response seen after well-studied viral vaccines, and produce unique transcriptional signatures that are strongly correlated to the induction of T cell and antibody responses.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 989
Author(s):  
Hae-Ji Kang ◽  
Ki-Back Chu ◽  
Min-Ju Kim ◽  
Hyunwoo Park ◽  
Hui Jin ◽  
...  

Successful vaccines against specific pathogens often require multiple immunizations and adjuvant usage. Yet, assessing the protective efficacy of different immunization regimens with adjuvanted Toxoplasma gondii vaccines remains elusive. In this study, we investigated the vaccine efficacy induced by CpG-ODN-adjuvanted T. gondii virus-like particles (VLPs) after challenge infection with T. gondii (ME49) in mice (BALB/c) upon one, two, and three immunizations. Immunization with adjuvanted T. gondii VLPs induced higher levels of T. gondii-specific IgG and/or IgA antibody responses, germinal center (GC) B cells, total B cells, and CD4+ and CD8+ T cells compared with unadjuvanted VLPs. Increasing the number of immunizations was strongly correlated with enhanced protective immunity against T. gondii in mice, with the highest protection being demonstrated in mice thrice-immunized with either adjuvanted T. gondii VLPs or VLPs alone. Notably, lesser bodyweight reductions and cerebral cyst counts were observed in mice receiving multiple immunizations with the adjuvanted VLPs, thereby confirming the effectiveness of adjuvanted boost immunizations. These results demonstrated that multiple immunizations with T. gondii VLPs is an effective approach, and the CpG-ODN can be developed as an effective adjuvant for T. gondii VLP vaccines.


2016 ◽  
Vol 90 (16) ◽  
pp. 7285-7302 ◽  
Author(s):  
Kara Jensen ◽  
Rafiq Nabi ◽  
Koen K. A. Van Rompay ◽  
Spencer Robichaux ◽  
Jeffrey D. Lifson ◽  
...  

ABSTRACTDespite significant progress in reducing peripartum mother-to-child transmission (MTCT) of human immunodeficiency virus (HIV) with antiretroviral therapy (ART), continued access to ART throughout the breastfeeding period is still a limiting factor, and breast milk exposure to HIV accounts for up to 44% of MTCT. As abstinence from breastfeeding is not recommended, alternative means are needed to prevent MTCT of HIV. We have previously shown that oral vaccination at birth with live attenuatedMycobacterium tuberculosisstrains expressing simian immunodeficiency virus (SIV) genes safely induces persistent SIV-specific cellular and humoral immune responses both systemically and at the oral and intestinal mucosa. Here, we tested the ability of oralM. tuberculosisvaccine strains expressing SIV Env and Gag proteins, followed by systemic heterologous (MVA-SIV Env/Gag/Pol) boosting, to protect neonatal macaques against oral SIV challenge. While vaccination did not protect infant macaques against oral SIV acquisition, a subset of immunized animals had significantly lower peak viremia which inversely correlated with prechallenge SIV Env-specific salivary and intestinal IgA responses and higher-avidity SIV Env-specific IgG in plasma. These controller animals also maintained CD4+T cell populations better and showed reduced tissue pathology compared to noncontroller animals. We show that infants vaccinated at birth can develop vaccine-induced SIV-specific IgA and IgG antibodies and cellular immune responses within weeks of life. Our data further suggest that affinity maturation of vaccine-induced plasma antibodies and induction of mucosal IgA responses at potential SIV entry sites are associated with better control of viral replication, thereby likely reducing SIV morbidity.IMPORTANCEDespite significant progress in reducing peripartum MTCT of HIV with ART, continued access to ART throughout the breastfeeding period is still a limiting factor. Breast milk exposure to HIV accounts for up to 44% of MTCT. Alternative measures, in addition to ART, are needed to achieve the goal of an AIDS-free generation. Pediatric HIV vaccines constitute a core component of such efforts. The results of our pediatric vaccine study highlight the potential importance of vaccine-elicited mucosal Env-specific IgA responses in combination with high-avidity systemic Env-specific IgG in protection against oral SIV transmission and control of viral replication in infant macaques. The induction of potent mucosal IgA antibodies by our vaccine is remarkable considering the age-dependent development of mucosal IgA responses postbirth. A deeper understanding of postnatal immune development may inform the design of improved vaccine strategies to enhance systemic and mucosal SIV/HIV antibody responses.


2013 ◽  
Vol 81 (10) ◽  
pp. 3609-3619 ◽  
Author(s):  
Sachi Tanaka ◽  
Maki Nishimura ◽  
Fumiaki Ihara ◽  
Junya Yamagishi ◽  
Yutaka Suzuki ◽  
...  

ABSTRACTToxoplasma gondiiis an obligate intracellular parasite that invades a wide range of vertebrate host cells. Chronic infections withT. gondiibecome established in the tissues of the central nervous system, where the parasites may directly or indirectly modulate neuronal function. However, the mechanisms underlying parasite-induced neuronal disorder in the brain remain unclear. This study evaluated host gene expression in mouse brain following infection withT. gondii. BALB/c mice were infected with the PLK strain, and after 32 days of infection, histopathological lesions in the frontal lobe were found to be more severe than in other areas of the brain. Total RNA extracted from infected and uninfected mouse brain samples was subjected to transcriptome analysis using RNA sequencing (RNA-seq). In theT. gondii-infected mice, 935 mouse brain genes were upregulated, whereas 12 genes were downregulated. GOstat analysis predicted that the upregulated genes were primarily involved in host immune responses and cell activation. Positive correlations were found between the numbers of parasites in the infected mouse brains and the expression levels of genes involved in host immune responses. In contrast, genes that had a negative correlation with parasite numbers were predicted to be involved in neurological functions, such as small-GTPase-mediated signal transduction and vesicle-mediated transport. Furthermore, differential gene expression was observed between mice exhibiting the clinical signs of toxoplasmosis and those that did not. Our findings may provide insights into the mechanisms underlying neurological changes duringT. gondiiinfection.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shanfeng Sun ◽  
Yanjun Gu ◽  
Junjuan Wang ◽  
Cheng Chen ◽  
Shiwen Han ◽  
...  

Type 1 allergies, involve a complex interaction between dendritic cells and other immune cells, are pathological type 2 inflammatory immune responses against harmless allergens. Activated dendritic cells undergo extensive phenotypic and functional changes to exert their functions. The activation, differentiation, proliferation, migration, and mounting of effector reactions require metabolic reprogramming. Dendritic cells are important upstream mediators of allergic responses and are therefore an important effector of allergies. Hence, a better understanding of the underlying metabolic mechanisms of functional changes that promote allergic responses of dendritic cells could improve the prevention and treatment of allergies. Metabolic changes related to dendritic cell activation have been extensively studied. This review briefly outlines the basis of fatty acid oxidation and its association with dendritic cell immune responses. The relationship between immune metabolism and effector function of dendritic cells related to allergic diseases can better explain the induction and maintenance of allergic responses. Further investigations are warranted to improve our understanding of disease pathology and enable new treatment strategies.


2021 ◽  
Vol 22 (17) ◽  
pp. 9228
Author(s):  
Guoshuai Cai ◽  
Mulong Du ◽  
Yohan Bossé ◽  
Helmut Albrecht ◽  
Fei Qin ◽  
...  

The current spreading coronavirus SARS-CoV-2 is highly infectious and pathogenic. In this study, we screened the gene expression of three host receptors (ACE2, DC-SIGN and L-SIGN) of SARS coronaviruses and dendritic cells (DCs) status in bulk and single cell transcriptomic datasets of upper airway, lung or blood of COVID-19 patients and healthy controls. In COVID-19 patients, DC-SIGN gene expression was interestingly decreased in lung DCs but increased in blood DCs. Within DCs, conventional DCs (cDCs) were depleted while plasmacytoid DCs (pDCs) were augmented in the lungs of mild COVID-19. In severe cases, we identified augmented types of immature DCs (CD22+ or ANXA1+ DCs) with MHCII downregulation. In this study, our observation indicates that DCs in severe cases stimulate innate immune responses but fail to specifically present SARS-CoV-2. It provides insights into the profound modulation of DC function in severe COVID-19.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 731-731 ◽  
Author(s):  
Hermann Einsele ◽  
Michael Bonin ◽  
Florian Gebhardt ◽  
Tobias Kessler ◽  
Susanne Riegler ◽  
...  

Abstract Dendritic cells (DCs), contribute to the initiation of immune responses to viral infection. Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns and initiate antimicrobial immune responses. TLR3 in DCs recognizes viral double-stranded RNA and triggers downstream signals to activate the NF?B and the interferon ß promoter. Double-stranded RNA may also be produced by double-stranded DNA viruses, such as HCMV, through bidirectional transcription from the genome during infection. Here we investigated whether TLR3 mediates the interaction between monocyte-derived immature DCs (iDCs) and HCMV after either active viral replication or viral penetration. We observed that HCMV strains differ in their interactions with iDCs. Strains that show no tropism for DCs, such as AD169, only penetrate iDCs, whereas the DC-tropic strains, e.g. TB40-E, actively replicate in iDCs. This difference provides an opportunity to study different forms of virus-DC interaction. Genome-wide expression array analysis showed that although 23 genes encoding cytokines, chemokines, and transcription factors are upregulated in iDCs after incubation with either strain, subsets of genes are induced specifically by DC-tropic or DC-nontropic strains. Only interaction with the DC-tropic HCMV strain TB40E, which replicates and produces mature virions, led to up-regulation of the TLR3 gene as well as genes downstream of TLR3 in the TLR3-signaling pathway, including class I interferon genes, NF?B, TRAF family member-associated NFKB activator (TANK), TANK-binding kinase 1 (TBK1), CXCL10, and CXCL11. The DC-nontropic HCMV strain AD169, which penetrates iDCs without replicating, did not upregulate genes of the TLR3 pathways. For selected genes, array data were confirmed by quantitative real-time PCR assay and ELISA to detect the gene products. To further confirm that the DC-tropic HCMV strain TB40E interacts with iDCs via TLR3, we transfected DCs with TLR3-specific siRNA prior to infection. TLR3 gene expression was potently silenced, while levels of the hALAS housekeeping gene mRNA remained normal. After these transfected DCs were infected with TB40E, HCMV-induced TLR3 gene expression was still markedly downregulated (−219 x), as were the downstream genes of the TLR3-signaling pathway (IFNa, −2.8 x; IFNß, −12.8 x; NF?B, −7.7 x; CCL5, −14.4 x; CXCL10, −16.5 x; CXCL11, −10.9 x). In contrast, TLR3 siRNA alone did not significantly modulate the expression of NF?B, CCL5, CXCL10, and class I interferons. Our results are consistent with those of McWirther et al., who reported that mice with a deficiency of TBK1 which is downstream of TLR3 show marked defects in IFNa and IFNß gene expression after viral infection or after engagement of TLR3 by double-stranded RNA. Thus, a key mediator of HCMV-DC interaction, which activates both a MyD88-dependent pathway that leads to early NF?B activation and a MyD88-independent pathway that leads to a class I interferon response (IFNa and IFNß) via interferon regulatory factor 3 (IRF3). This activation of the TLR3 signalling pathway was not observed when the DC-nontropic HCMV strain AD169 penetrated DCs without replicating. The identification of pathways that enhance innate antiviral immune responses may provide new avenues of therapeutic intervention for viral infections.


Sign in / Sign up

Export Citation Format

Share Document