scholarly journals TUBA1C is a Prognostic Marker in Low-grade Glioma and Correlates with Immune Cell Infiltration in the Tumor Microenvironment

2021 ◽  
Vol 12 ◽  
Author(s):  
Hua Zhu ◽  
Xinyao Hu ◽  
Lijuan Gu ◽  
Zhihong Jian ◽  
Liqin Li ◽  
...  

TUBA1C, a microtubule component, contributes to the development of several cancers. Our purpose was to study the expression of TUBA1C, its potential prognostic value, and its effects on the infiltration of immune cells of low-grade glioma (LGG). Through applying multiple bioinformatics analyses, we extracted and analyzed datasets from TCGA, TIMER, GTEx, GEPIA, and HPA to investigate the potential oncogenic mechanisms of TUBA1C, including the correlation between TUBA1C and prognosis, immune-checkpoints, tumor microenvironment (TME), and infiltration of immune cells in LGG. GO functional annotations and KEGG pathway analyses were further applied to investigate the potential action of TUBA1C in LGG. We revealed that the mRNA levels of TUBA1C were increased in LGG tumor tissues than in normal tissues. Additionally, TUBA1C was up-regulated in the grade III of LGG than in grade II. Moreover, we found that TUBA1C may be an independent prognostic factor of LGG, and high TUBA1C expression correlated to a poor prognosis of LGG. TUBA1C expression was positively associated with the infiltration of B cells, CD8 T+ cells, CD4+ T cells, macrophages, dendritic cells, and neutrophils. TUBA1C was also verified to be co-expressed with immune-related genes and immune-checkpoints. GO and KEGG pathway analyses indicated that TUBA1C may potentially regulate the pathogenesis of LGG through immune-related pathways, including chemokine pathway; JAK-STAT pathway; natural killer cell mediated cytotoxicity; T cell receptor pathway; leukocyte migration; negative regulation of immune system process; regulation of lymphocyte activation; T cell activation and other pathways. In conclusion, TUBA1C expression is increased in LGG and high TUAB1C expression is related to a poor prognosis. TUBA1C may influence tumor development by regulating the tumor-infiltrating cells in the TME. TUBA1C may be a potential target for immunotherapy.

2021 ◽  
Vol 8 ◽  
Author(s):  
Jing Wang ◽  
Shu Xia ◽  
Jing Zhao ◽  
Chen Gong ◽  
Qingsong Xi ◽  
...  

Background: Secreted modular calcium-binding protein 1 (SMOC1) belongs to a family of matricellular proteins; it was involved in embryo development, endothelial cell proliferation, angiogenesis, integrin–matrix interactions, cell adhesion, and regulation of glucose metabolism. Previous studies showed that the expression of SMOC1 was increased in some tumors. However, the prognostic value and the biological function of SMOC1 in tumor remain unclear.Methods: In this study, we explored the expression profile and prognostic value of SMOC1 in pan-cancers, especially glioma, via multiple databases, including Oncomine, Gene Expression Profiling Interactive 2, PrognoScan, Kaplan–Meier plotter, and the Chinese Glioma Genome Atlas database. Furthermore, LinkedOmics was used to identify the genes coexpressed with SMOC1 and to perform Kyoto Encyclopedia of Genes and Genomes pathways and Gene Ontology analysis in low-grade glioma (LGG). Also, the Cancer Single-Cell State Atlas database was used to evaluate the correlation between SMOC1 expression and functional state activities in glioma cells. In addition, the Tumor Immune Estimation Resource and TISIDB databases were used to evaluate the correlations between SMOC1 expression and tumor-infiltrating immune cells in the tumor microenvironment.Results: Compared with normal brain tissues, the expression of SMOC1 was increased in LGG tissues. The higher expression of SMOC1 was significantly correlated with better survival of LGG patients. Additionally, functional analyses showed that the SMOC1 coexpressed genes were inhibited in processes such as response to type I interferon and interferon-gamma, lymphocyte-mediated immunity, leukocyte migration, adaptive immune response, neutrophil-mediated immunity, T cell activation, and pathways including EMC–receptor interaction, Th17 cell differentiation, and leukocyte trans-endothelial migration in LGG. Moreover, the expression of SMOC1 was correlated with stemness, hypoxia, EMT, and metastasis of glioma cells. Additionally, the expression of SMOC1 expression was negatively correlated with levels of infiltrating B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells, and gene markers of most immune cells in LGG.Conclusion: Our results suggest that SMOC1 could be a potential biomarker to determine prognosis and might play a specific role in the tumor microenvironment of glioma, thereby influencing the development and progression of glioma. These findings provide some new insights for further investigation.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 446-446
Author(s):  
Yusuke Isshiki ◽  
Dylan McNally ◽  
Ari M. Melnick ◽  
Wendy Béguelin

Abstract The genetic hallmarks of follicular lymphomas include BCL2 translocations and somatic mutations of epigenetic modifier genes such as EZH2. Histologically, FLs typically feature a rich microenvironment, most notably featuring extensive follicular dendritic cell (FDC) networks with dendrites making extensive contact with lymphoma cells. In recent work we showed that the main effect of EZH2 gain-of-function mutations in GC B-cells is to enable them to become less dependent of T-cell help and strengthen their immune synapse formation with FDCs, which induces aberrant proliferation and survival of GC centrocytes and hence formation of a unique lymphoma-permissive immune niche. However, it is still unknown how interactions between EZH2 mutant GC B-cells and other immune cells change throughout the progression of the disease. To evaluate the evolution of the tumor microenvironment (TME) throughout EZH2 mutant lymphoma progression, we developed a genetically engineered mouse model designed for conditional expression of gain-of-function Ezh2 mutant and BCL2 in GC B-cells, Rosa26 LSL.BCL2.IRES.GFP;Ezh2 Y641F;Cγ1Cre (hereafter BCL2/Ezh2 Y641F), in which Cγ1-driven Cre excision of a STOP cassette in the Rosa26 locus leads to overexpression of BCL2 and GFP, and expression of the endogenous Ezh2 mutant Y641F. This mouse model develops low-grade follicular-like lymphoma, characterized by expanded follicles composed largely of centrocyte neoplastic GC B-cells and extensive FDC meshwork, along with presence of CD4 +, TFH and regulatory T cells (FOXP3 +), as depicted by multiparametric in situ imaging and multiparametric flow cytometry. At cytological level, cells are predominantly small with condensed chromatin, irregular nuclei, scant cytoplasm, and inconspicuous nucleoli, without sheets of large cells. Over time, these low grade FLs progress to advanced grade, characterized by disruption of follicle structures, expansion of centroblast-like large tumor cells and reduced CD4 + T cell infiltration and FDC meshwork. Furthermore, we have developed a murine transformed FL cell line by sequential passages of an original BCL2/Ezh2 Y641F low-grade FL into immunodeficient Rag1KO mice. We have transduced this BCL2/Ezh2 Y641F cell line with luciferase, and it successfully engrafted and homed to lymphoid organs when injected i.v. into immunocompetent C57BL6 mice. The cell line consists of high proliferative GC B-cells with multiple and irregular nuclei, open chromatin and prominent nucleoli that resemble DLBCL. The microenvironment of tumors developed in C57BL6 mice is characterized by disruption of follicle structures, severe reduction or absence of FDC meshwork, decreased CD4 +, CD8 + and Tregs, downregulation of MHC-I and MHC-II. Therefore, our mouse model also recapitulates progression and transformation stages. Since MYC translocations are frequent events that occur during histological transformation of FL, we modeled this more aggressive EZB MYC subtype of DLBCL. For that, we further crossed our BCL2/Ezh2 Y641F mice to Rosa26 LSL.MYC.IRES.hCD2. We generated cohorts of transplanted mice by injecting bone marrow cells from BCL2, BCL2/Ezh2 Y641F, BCL2/MYC, and BCL2/Ezh2 Y641F/MYC mice into lethally irradiated C57BL6 recipients. Recipient mice (n=5 per group) were immunized with SRBC to induce formation of GCs and sacrificed 5.5 months post bone marrow transplant. All genotypes showed expansion of FAS +CD38 -BCL2 GFP+ GC B-cells in spleen and lymph nodes; however, the proportion of GC B-cells in Ezh2 Y641F was significantly increased compared with Ezh2 WT, in both presence and absence of MYC. In contrast, FAS -CD38 +BCL2 GFP+ and CD138 +BCL2 GFP+ cells were significantly increased in MYC + mice and decreased in Ezh2 Y641F, suggesting that Ezh2 mutation is required to maintain the GC phenotype. The acquisition of Ezh2 Y641F in BCL2/MYC mice induced a reduction of CD4 + and CD8 + in the TME, and decreased TFH without changes in TFR proportions in GCs. Strikingly, FDC meshwork was significantly shrank in MYC + cases, and partially restored by acquisition of Ezh2 Y641F, indicating that MYC overexpression may contribute to acquire FDC independency for the survival of lymphoma cells. Our results indicate that progression of FL critically affects the TME and acquisition of additional mutations such as MYC alters the interactions between lymphoma cells and tumor supportive immune cells in TME. Disclosures Melnick: Epizyme: Consultancy; Janssen: Research Funding; KDAC Therapeutics: Current holder of individual stocks in a privately-held company; Celgene Corporation: Consultancy; Constellation Pharmaceuticals: Consultancy; Astra Zeneca: Consultancy; Daiichi Sankyo: Consultancy; Exo Therapeutics: Membership on an entity's Board of Directors or advisory committees; Sanofi US Services: Research Funding.


2019 ◽  
Vol 20 (15) ◽  
pp. 3676 ◽  
Author(s):  
Zimmer ◽  
Kim ◽  
Sprang ◽  
Leukel ◽  
Khafaji ◽  
...  

Glycoprotein A repetition predominant (GARP), a specific surface molecule of activated regulatory T cells, has been demonstrated to significantly contribute to tolerance in humans by induction of peripheral Treg and regulatory M2-macrophages and by inhibition of (tumorantigen-specific) T effector cells. Previous work identified GARP on Treg, and also GARP on the surface of several malignant tumors, as well as in a soluble form being shedded from their surface, contributing to tumor immune escape. Preliminary results also showed GARP expression on brain metastases of malignant melanoma. On the basis of these findings, we investigated whether GARP is also expressed on primary brain tumors. We showed GARP expression on glioblastoma (GB) cell lines and primary GB tissue, as well as on low-grade glioma, suggesting an important influence on the tumor micromilieu and the regulation of immune responses also in primary cerebral tumors. This was supported by the finding that GB cells led to a reduced, in part GARP-dependent effector T cell function (reduced proliferation and reduced cytokine secretion) in coculture experiments. Interestingly, GARP was localized not only on the cell surface but also in the cytoplasmatic, as well as nuclear compartments in tumor cells. Our findings reveal that GARP, as an immunoregulatory molecule, is located on, as well as in, tumor cells of GB and low-grade glioma, inhibiting effector T cell function, and thus contributing to the immunosuppressive tumor microenvironment of primary brain tumors. As GARP is expressed on activated Treg, as well as on brain tumors, it may be an interesting target for new immunotherapeutic approaches using antibody-based strategies as this indication.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A689-A689
Author(s):  
Naina Singhi ◽  
Carolyn Shasha ◽  
Sylvia Lee ◽  
Julia Szeto ◽  
Ata Moshiri ◽  
...  

BackgroundTumor-antigen specific CD4+ T cells are crucial for the efficacy of antibodies that block immune checkpoint proteins in mouse tumor models, but their activities in human tumor immunity are less clear. CD8+ T cells infiltrating human tumors, including those specific for tumor antigens, have been studied using single cell profiling techniques and exist in a variety of dysfunctional states. The transcriptional states of tumor-specific CD4+ T cells present in tumors and their potential contributions to the tumor microenvironment are less well understood.MethodsWe used targeted single cell RNA sequencing and matching of T cell receptor (TCR) sequences to identify phenotypic signatures that discriminated tumor antigen- and viral antigen-specific CD4+ T cells infiltrating human melanoma tumors in four patients. The presence of CD4+ T cells with these signatures was correlated with the number and phenotype of other immune cells in the tumor microenvironment in an extended cohort of 20 patients.ResultsWe identified 259 CD4+ T cells representing 40 different TCR clonotypes specific for 13 neoantigens and 108 cells representing 14 TCR clonotypes specific for self-antigens in four melanoma patients. High expression of CXCL13 defined conventional CD4+ T cells that recognize tumor associated neoantigens and self-antigens from bystander and viral antigen-specific CD4+ T cells. Tumor-reactive CD4+ T cells could be subdivided into clusters expressing memory and T follicular helper markers, and those expressing cytolytic markers and IFN-g. In an extended cohort of 20 patients with melanoma, the frequency of CXCL13+ CD4+ T cells in the tumor microenvironment correlated with the presence and proliferation of CD8+ T cells, the presence and maturation of B cells, the activation of interferon responsive genes in tumor associated macrophages, and patient survival. CD4+ T cells with similar transcriptional signatures were identified in data sets from breast and non-small cell lung cancer, suggesting these markers may enrich for tumor-reactive CD4+ T cells in many cancers.ConclusionsThese results identify a subset of tumor infiltrating conventional CD4+ T cells in melanoma that are enriched for reactivity to tumor antigens and exist in multiple phenotypic states. Correlations of the presence of these cells with the frequency and phenotype of other immune cells suggest roles for these tumor antigen-specific CD4+ T cells in providing CD8+ T cell help, driving recruitment and maturation of B cells, and activating macrophages. Isolating such cells based on their unique phenotype and utilizing them for adoptive therapy could alter the tumor microenvironment for therapeutic benefit.Ethics ApprovalAll Patient samples in this study were obtained from patients who signed informed consent in a study approved by the institutional review board of the Fred Hutchinson Cancer Research Center (protocol #2643).


2018 ◽  
Vol 36 (5_suppl) ◽  
pp. 178-178
Author(s):  
Hongjae Chon

178 Background: Cancer immunotherapy targeting immune checkpoints are now emerging as a promising therapeutic strategy in various tumors. However, the treatment of T cell non-inflamed tumor which lacks intratumoral T cell infiltrates are still major clinical hurdle. Therefore, drugs that target signaling pathways to increase T cell infiltration in non-inflamed tumor microenvironment (TME) should be investigated. In this study, we aimed to explore the therapeutic potential of STING agonist in murine model of non-small cell lung cancer to overcome immunotherapy resistance. Methods: C57BL/6 mice, which are 6 to 8 weeks of age, were used for the experiment. Mice were injected with Lewis lung carcinoma cells on the right flank. STING agonist (cGAMP) was injected intratumorally. CD8+ and CD31+ cells were detected using immunofluorescence (IF) staining. Gene expressions of tumor microenvironment were analyzed by NanoString RNA sequencing. Flow cytometry (FACS) was performed to detect CD8+, CD4+, Treg and myeloid cell population. Tumor growths were evaluated in combination with anti-PD1 and STING agonist treatment. Results: Local injection of STING agonist effectively delayed tumor growth of LLC. STING agonist increased intratumoral CD8+ T cells and vascular disruption. Expressions of inhibitory checkpoint molecules (PD-1, PD-L1), cytokines (IFN), CD8+ and CD4+ T cells were increased, which showed that anti-cancer immune responses were augmented. Combination treatment of anti-PD-1 antibody and STING agonist synergistically decreased tumor growth. Conclusions: In this study, STING agonist was shown to delay tumor growth and remodel tumor microenvironment in non-inflamed lung carcinoma model. Combination therapy of STING agonist and immune checkpoint inhibitors (ICI) targeting PD-1 synergistically suppressed the growth of lung cancer which is resistant to ICI monotherapy. Collectively, our findings demonstrated that localized STING therapy effectively sensitizes non-inflamed lung cancer to systemic ICI treatment and induces a maximal anti-cancer immune response.


2022 ◽  
Vol 10 (1) ◽  
pp. e003760
Author(s):  
Fengguang Guo ◽  
Jugal K Das ◽  
Koichi S Kobayashi ◽  
Qing-Ming Qin ◽  
Thomas A Ficht ◽  
...  

The tumor microenvironment (TME) is characterized by the activation of immune checkpoints, which limit the ability of immune cells to attack the growing cancer. To overcome immune suppression in the clinic, antigen-expressing viruses and bacteria have been developed to induce antitumor immunity. However, the safety and targeting specificity are the main concerns of using bacteria in clinical practice as antitumor agents. In our previous studies, we have developed an attenuated bacterial strain (Brucella melitensis 16M ∆vjbR, henceforth Bm∆vjbR) for clinical use, which is safe in all tested animal models and has been removed from the select agent list by the Centers for Disease Control and Prevention. In this study, we demonstrated that Bm∆vjbR homed to tumor tissue and improved the TME in a murine model of solid cancer. In addition, live Bm∆vjbR promoted proinflammatory M1 polarization of tumor macrophages and increased the number and activity of CD8+ T cells in the tumor. In a murine colon adenocarcinoma model, when combined with adoptive transfer of tumor-specific carcinoembryonic antigen chimeric antigen receptor CD8+ T cells, tumor cell growth and proliferation was almost completely abrogated, and host survival was 100%. Taken together, these findings demonstrate that the live attenuated bacterial treatment can defeat cancer resistance to chimeric antigen receptor T-cell therapy by remodeling the TME to promote macrophage and T cell-mediated antitumor immunity.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1850
Author(s):  
Justine Cinier ◽  
Margaux Hubert ◽  
Laurie Besson ◽  
Anthony Di Roio ◽  
Céline Rodriguez ◽  
...  

Regulatory T cells (Tregs) are present in a large majority of solid tumors and are mainly associated with a poor prognosis, as their major function is to inhibit the antitumor immune response contributing to immunosuppression. In this review, we will investigate the mechanisms involved in the recruitment, amplification and stability of Tregs in the tumor microenvironment (TME). We will also review the strategies currently developed to inhibit Tregs’ deleterious impact in the TME by either inhibiting their recruitment, blocking their expansion, favoring their plastic transformation into other CD4+ T-cell subsets, blocking their suppressive function or depleting them specifically in the TME to avoid severe deleterious effects associated with Treg neutralization/depletion in the periphery and normal tissues.


Author(s):  
L. Sams ◽  
S. Kruger ◽  
V. Heinemann ◽  
D. Bararia ◽  
S. Haebe ◽  
...  

Abstract Purpose This pilot study aimed on generating insight on alterations in circulating immune cells during the use of FOLFIRINOX and gemcitabine/nab-paclitaxel in pancreatic ductal adenocarcinoma (PDAC). Patients and methods Peripheral blood mononuclear cells were isolated before and 30 days after initiation of chemotherapy from 20 patients with advanced PDAC. Regulatory T cells (FoxP3+) and immune checkpoints (PD-1 and TIM-3) were analyzed by flow cytometry and immunological changes were correlated with clinical outcome. Results Heterogeneous changes during chemotherapy were observed in circulating T-cell subpopulations with a pronounced effect on PD-1+ CD4+/CD8+ T cells. An increase in FoxP3+ or PD-1+ T cells had no significant effect on survival. An increase in TIM3+/CD8+ (but not TIM3+/CD4+) T cells was associated with a significant inferior outcome: median progression-free survival in the subgroup with an increase of TIM-3+/CD8+ T cells was 6.0 compared to 14.0 months in patients with a decrease/no change (p = 0.026); corresponding median overall survival was 13.0 and 20.0 months (p = 0.011), respectively. Conclusions Chemotherapy with FOLFIRNOX or gemcitabine/nab-paclitaxel induces variable changes in circulating T-cell populations that may provide prognostic information in PDAC.


Sign in / Sign up

Export Citation Format

Share Document