scholarly journals Identification of Immune-Related Key Genes in Ovarian Cancer Based on WGCNA

2021 ◽  
Vol 12 ◽  
Author(s):  
Qingli Quan ◽  
Xinxin Xiong ◽  
Shanyun Wu ◽  
Meixing Yu

Background: Ovarian cancer (OV) is a fatal gynecologic malignancy and has poor survival rate in women over the age of forty. In our study, we aimed to identify genes related to immune microenvironment regulations and explore genes associated with OV prognosis.Methods: The RNA-seq data of GDC TCGA Ovarian Cancer cohort of 376 patients was retrieved from website. Weighted gene co-expression network analysis (WGCNA) and ESTIMATE algorithm were applied to identify the key genes associated with the immune scores. The correlation between key genes and 22 immune cell types were estimated by using CIBERSORT algorithms.Results: WGCNA showed that the pink module was most correlated with the immune score. Seven of 14 key genes (FCRL3, IFNG, KCNA3, LY9, PLA2G2D, THEMIS, and TRAT1) were significantly associated with the OS of OV patients. Correlation analysis showed our key genes positively related to M1 macrophages, CD8 T cells, plasma cells, regulatory T (Treg) cells and activated memory CD4 T cells, and negatively related to naive CD4 T cells, M0 macrophages, activated dendritic cells (DCs) and memory B cells. Kaplan-Meier survival analysis showed that lower abundances of neutrophils and higher abundances of M1 macrophages, plasma cells, T cells gamma delta (γδT) cells and follicular helper T (Tfh) cells predicted better OV prognosis.Conclusion: Forteen key genes related to the immune infiltrating of OV were identified, and seven of them were significantly related to prognosis. These key genes have potential roles in tumor infiltrating immune cells differentiation and proliferation. This study provided potential prognostic markers and immunotherapy targets for OV.

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1938 ◽  
Author(s):  
Milagros Silva Morales ◽  
Daniel Mueller

Peripheral immune self-tolerance relies on protective mechanisms to control autoreactive T cells that escape deletion in the thymus. Suppression of autoreactive lymphocytes is necessary to avoid autoimmunity and immune cell–mediated damage of healthy tissues. An intriguing relationship has emerged between two mechanisms of peripheral tolerance—induction of anergy and Foxp3+ regulatory T (Treg) cells—and is not yet well understood. A subpopulation of autoreactive anergic CD4 T cells is a precursor of Treg cells. We now hypothesize that phenotypic and mechanistic features of Treg cells can provide insights to understand the mechanisms behind anergy-derived Treg cell differentiation. In this short review, we will highlight several inherent similarities between the anergic state in conventional CD4 T cells as compared with fully differentiated natural Foxp3+ Treg cells and then propose a model whereby modulations in metabolic programming lead to changes in DNA methylation at the Foxp3 locus to allow Foxp3 expression following the reversal of anergy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yongguang Liu ◽  
Xiaoyou Liu ◽  
Song Zhou ◽  
Ruiquan Xu ◽  
Jianmin Hu ◽  
...  

Kidney transplantation is currently the first choice of treatment for various types of end-stage renal failure, but there are major limitations in the application of immunosuppressive protocols after kidney transplantation. When the dose of immunosuppressant is too low, graft rejection occurs easily, while a dose that is too high can lead to graft loss. Therefore, it is very important to explore the immune status of patients receiving immunosuppressive agents after kidney transplantation. To compare the immune status of the recipient’s whole peripheral blood before and after receipt of immunosuppressive agents, we used single-cell cytometry by time-of-flight (CyTOF) to detect the peripheral blood immune cells in five kidney transplant recipients (KTRs) from the Department of Organ Transplantation of Zhujiang Hospital of Southern Medical University before and after receiving immunosuppressive agents. Based on CyTOF analysis, we detected 363,342 live single immune cells. We found that the immune cell types of the KTRs before and after receipt of immunosuppressive agents were mainly divided into CD4+ T cells, CD8+ T cells, B cells, NK cells/γδ T cells, monocytes/macrophages, granulocytes, and dendritic cells (DCs). After further reclustering of the above cell types, it was found that the immune cell subclusters in the peripheral blood of patients underwent major changes after receipt of immunosuppressants. After receiving immunosuppressive therapy, the peripheral blood of KTRs had significantly increased levels of CD57+NK cells and significantly decreased levels of central memory CD4+ T cells, follicular helper CD4+ T cells, effector CD8+ T cells, effector memory CD8+ T cells and naive CD8+ T cells. This study used CyTOF to classify immune cells in the peripheral blood of KTRs before and after immunosuppressive treatment, further compared differences in the proportions of the main immune cell types and immune cell subgroups before and after receipt of immunosuppressants, and provided relatively accurate information for assessment and treatment strategies for KTRs.


2021 ◽  
Vol 8 ◽  
Author(s):  
Haipeng Jia ◽  
Xiaofen Zhang ◽  
Xinxin Liu ◽  
Ruifang Qiao ◽  
Yan Liu ◽  
...  

Objective: Multiple myeloma is an incurable hematological malignancy. It is imperative to identify immune markers for early diagnosis and therapy. Here, this study analyzed immune-related mRNAs and assessed their prognostic value and therapeutic potential.Methods: Abnormally expressed immune-related mRNAs were screened between multiple myeloma and normal bone marrow specimens in the GSE47552 and GSE6477 datasets. Their biological functions were then explored. Survival analysis was presented for assessing prognosis-related mRNAs. CIBERSORT was utilized for identifying 22 immune cell compositions of each bone marrow specimen. Correlation between FABP5 mRNA and immune cells was then analyzed in multiple myeloma.Results: Thirty-one immune-related mRNAs were abnormally expressed in multiple myeloma, which were primarily enriched in B cells-related biological processes and pathways. Following validation, FABP5 mRNA was a key risk factor of multiple myeloma. Patients with its up-regulation usually experienced unfavorable outcomes. There were distinct differences in the infiltration levels of B cells naïve, B cells memory, plasma cells, T cells CD4 naïve, resting memory CD4 T cells, activated memory CD4 T cells, Tregs, resting NK cells, M0 macrophages, M1 macrophages, M2 macrophages, and neutrophils between multiple myeloma and normal samples. FABP5 mRNA had correlations to B cells memory, B cells naïve, dendritic cells activated, macrophages M0, macrophages M1, macrophages M2, neutrophils, activated NK cells, resting memory CD4 T cells, CD8 T cells and Tregs.Conclusion: Collectively, our data showed that FABP5 mRNA was related to immune microenvironment, which could be a target of immunotherapy and prognostic marker for multiple myeloma.


Author(s):  
Gabriela Martins Costa Gomes ◽  
Wilfried Karmaus ◽  
Vanessa E. Murphy ◽  
Peter G. Gibson ◽  
Elizabeth Percival ◽  
...  

Air pollution exposure during pregnancy may be a risk factor for altered immune maturation in the offspring. We investigated the association between ambient air pollutants during pregnancy and cell populations in cord blood from babies born to mothers with asthma enrolled in the Breathing for Life Trial. For each patient (n = 91), daily mean ambient air pollutant levels were extracted during their entire pregnancy for sulfur dioxide (SO2), nitric oxide, nitrogen dioxide, carbon monoxide, ozone, particulate matter <10 μm (PM10) or <2.5 μm (PM2.5), humidity, and temperature. Ninety-one cord blood samples were collected, stained, and assessed using fluorescence-activated cell sorting (FACS). Principal Component (PC) analyses of both air pollutants and cell types with linear regression were employed to define associations. Considering risk factors and correlations between PCs, only one PC from air pollutants and two from cell types were statistically significant. PCs from air pollutants were characterized by higher PM2.5 and lower SO2 levels. PCs from cell types were characterized by high numbers of CD8 T cells, low numbers of CD4 T cells, and by high numbers of plasmacytoid dendritic cells (pDC) and low numbers of myeloid DCs (mDCs). PM2.5 levels during pregnancy were significantly associated with high numbers of pDCs (p = 0.006), and SO2 with high numbers of CD8 T cells (p = 0.002) and low numbers of CD4 T cells (p = 0.011) and mDCs (p = 4.43 × 10−6) in cord blood. These data suggest that ambient SO2 and PM2.5 exposure are associated with shifts in cord blood cell types that are known to play significant roles in inflammatory respiratory disease in childhood.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sheng Zhou ◽  
Hongcheng Lu ◽  
Min Xiong

BackgroundRheumatoid arthritis (RA) is a chronic systemic autoimmune disorder characterized by inflammatory cell infiltration, leading to persistent synovitis and joint destruction. The pathogenesis of RA remains unclear. This study aims to explore the immune molecular mechanism of RA through bioinformatics analysis.MethodsFive microarray datasets and a high throughput sequencing dataset were downloaded. CIBERSORT algorithm was performed to evaluate immune cell infiltration in synovial tissues between RA and healthy control (HC). Wilcoxon test and Least Absolute Shrinkage and Selection Operator (LASSO) regression were conducted to identify the significantly different infiltrates of immune cells. Differentially expressed genes (DEGs) were screened by “Batch correction” and “RobustRankAggreg” methods. Functional correlation of DEGs were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Candidate biomarkers were identified by cytoHubba of Cytoscape, and their diagnostic effectiveness was predicted by Receiver Operator Characteristic Curve (ROC) analysis. The association of the identified biomarkers with infiltrating immune cells was explored using Spearman’s rank correlation analysis in R software.ResultsTen significantly different types of immune cells between RA and HC were identified. A total of 202 DEGs were obtained by intersection of DEGs screened by two methods. The function of DEGs were significantly associated with immune cells. Five hub genes (CXCR4, CCL5, CD8A, CD247, and GZMA) were screened by R package “UpSet”. CCL5+CXCR4 and GZMA+CD8A were verified to have the capability to diagnose RA and early RA with the most excellent specificity and sensitivity, respectively. The correlation between immune cells and biomarkers showed that CCL5 was positively correlated with M1 macrophages, CXCR4 was positively correlated with memory activated CD4+ T cells and follicular helper T (Tfh) cells, and GZMA was positively correlated with Tfh cells.ConclusionsCCL5, CXCR4, GZMA, and CD8A can be used as diagnostic biomarker for RA. GZMA-Tfh cells, CCL5-M1 macrophages, and CXCR4- memory activated CD4+ T cells/Tfh cells may participate in the occurrence and development of RA, especially GZMA-Tfh cells for the early pathogenesis of RA.


2021 ◽  
Vol 22 (13) ◽  
pp. 7010
Author(s):  
Shicheng Wang ◽  
Man Cheng ◽  
Peng Peng ◽  
Yue Lou ◽  
Aili Zhang ◽  
...  

Macrophages play critical roles in both innate and adaptive immunity and are known for their high plasticity in response to various external signals. Macrophages are involved in regulating systematic iron homeostasis and they sequester iron by phagocytotic activity, which triggers M1 macrophage polarization and typically exerts antitumor effects. We previously developed a novel cryo-thermal therapy that can induce the mass release of tumor antigens and damage-associated molecular patterns (DAMPs), promoting M1 macrophage polarization. However, that study did not examine whether iron released after cryo-thermal therapy induced M1 macrophage polarization; this question still needed to be addressed. We hypothesized that cryo-thermal therapy would cause the release of a large quantity of iron to augment M1 macrophage polarization due to the disruption of tumor cells and blood vessels, which would further enhance antitumor immunity. In this study, we investigated iron released in primary tumors, the level of iron in splenic macrophages after cryo-thermal therapy and the effect of iron on macrophage polarization and CD4+ T cell differentiation in metastatic 4T1 murine mammary carcinoma. We found that a large amount of iron was released after cryo-thermal therapy and could be taken up by splenic macrophages, which further promoted M1 macrophage polarization by inhibiting ERK phosphorylation. Moreover, iron promoted DC maturation, which was possibly mediated by iron-induced M1 macrophages. In addition, iron-induced M1 macrophages and mature DCs promoted the differentiation of CD4+ T cells into the CD4 cytolytic T lymphocytes (CTL) subset and inhibited differentiation into Th2 and Th17 cells. This study explains the role of iron in cryo-thermal therapy-induced antitumor immunity from a new perspective.


Author(s):  
Kuan Lai ◽  
Wenjing Zhang ◽  
Songshan Li ◽  
Zhiwen Zhang ◽  
Shuangde Xie ◽  
...  

Abstract Pemphigus vulgaris (PV) is a chronic and potentially life-threatening autoimmune blistering disease. Aberrant mTOR pathway activity is involved in many autoimmune diseases. This study investigated the correlation of mTOR pathway (PI3K/AKT/mTOR/p70S6K) activity with the loss of balance in T helper 2/regulatory T (Th2/Treg) cells in the peripheral blood of PV patients. CD4+ T cells were isolated from 15 PV patients and 15 healthy controls (HCs), the ratios of Th2/CD4+ T cells and Treg/CD4+ T cells, the activity of the mTOR pathway (PI3K/AKT/mTOR/p70S6K), the transcription factors and cytokines of Th2 and Treg cells were detected. Primary CD4+ T cells from PV patients were cultured under Th2- or Treg-polarizing conditions with or without rapamycin in vitro. We found that PV patients showed significantly elevated serum IL-4 when compared with HCs, and serum IL-4 level was positively correlated with the titer of anti-Dsg1/3 antibody and disease severity, while the serum TGF-β level was negatively correlated with the titer of anti-Dsg3 antibody and disease severity. Meanwhile, PV patients showed increased Th2/CD4+ T cell ratio; decreased Treg/CD4+ T cell ratio; elevated mRNA of PI3K, AKT, mTOR and protein of PI3K (P85), AKT, p-AKT (Ser473), mTOR, p-mTOR (Ser2448), p-p70S6K (Thr389), GATA3; reduced protein of forkhead box protein 3. Rapamycin inhibited Th2 cell differentiation and promoted Treg cell differentiation in vitro. These data suggest a close association between mTOR pathway activation and the loss of balance in Th2/Treg cells in peripheral blood of PV patients. Inhibiting mTORC1 can help restore the Th2/Treg balance.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A873-A873
Author(s):  
Arika Feils ◽  
Mackenzie Heck ◽  
Anna Hoefges ◽  
Peter Carlson ◽  
Luke Zangl ◽  
...  

BackgroundMice bearing B78 melanoma tumors can be cured using an in situ vaccine (ISV) regimen that includes radiation (RT) together with immunocytokine (tumor-targeting mAb conjugated to IL-2). B78 melanoma cells, derived from B16 cells, express minimal to no MHC-I but express MHC-II upon IFN-g/TNF-a stimulation. Although B78 cells are primarily MHC-I-deficient, an increased CD8 T cell infiltration into the tumor microenvironment (TME) has been shown following ISV.1 To further investigate the potential role of specific immune cell lineages in the B78 anti-tumor response to ISV, immune subset depletion studies and flow cytometric analyses were performed.MethodsC57BL/6 mice bearing B78 tumors were depleted of immune cell subsets with mAbs (anti-CD4, anti-CD8, anti-NK1.1, or Rat IgG control) for 3 weeks during the course of treatment. Treatment groups included no treatment, RT (12 Gy), or ISV (RT D0 and immunocytokine D5-D9). 6 mice/group (repeated three times) were followed for survival/tumor growth, and flow cytometry studies included 4 mice/group, sacrificed on D8 and D13 following the start of ISV.ResultsMice depleted of CD4 T cells during the course of ISV showed a significant reduction of anti-tumor effect as compared to mice treated with ISV/Rat IgG (pConclusionsThese studies suggest that CD4 T cells are essential for an anti-tumor response in the B78 melanoma model. In vivo depletion data show that CD4 T cells, but not CD8 or NK cells, are required for a decrease in tumor growth via ISV. Flow cytometric analyses suggest an interplay between CD4 and CD8 T cells as indicated by a decrease in CD8/IFN-g expression following ISV in the absence of CD4 T cells. The role that MHC-I and MHC-II expression plays in this CD4/CD8 T cell anti-tumor response is under investigation. In future studies, B78 melanoma may serve as a critical syngeneic model for development of more effective immunotherapy treatment regimens.Ethics ApprovalAll animal experiments were performed in accordance with protocols approved by Animal Care and Use Committees of the University of Wisconsin-Madison.ReferenceMorris Z, Guy E, Francis D, et al. In situ tumor vaccination by combining local radiation and tumor-specific antibody or immunocytokine treatments. Cancer Res 2016;76(13):3929-3941.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sumeyye Su ◽  
Shaya Akbarinejad ◽  
Leili Shahriyari

AbstractSince the outcome of treatments, particularly immunotherapeutic interventions, depends on the tumor immune micro-environment (TIM), several experimental and computational tools such as flow cytometry, immunohistochemistry, and digital cytometry have been developed and utilized to classify TIM variations. In this project, we identify immune pattern of clear cell renal cell carcinomas (ccRCC) by estimating the percentage of each immune cell type in 526 renal tumors using the new powerful technique of digital cytometry. The results, which are in agreement with the results of a large-scale mass cytometry analysis, show that the most frequent immune cell types in ccRCC tumors are CD8+ T-cells, macrophages, and CD4+ T-cells. Saliently, unsupervised clustering of ccRCC primary tumors based on their relative number of immune cells indicates the existence of four distinct groups of ccRCC tumors. Tumors in the first group consist of approximately the same numbers of macrophages and CD8+ T-cells and and a slightly smaller number of CD4+ T cells than CD8+ T cells, while tumors in the second group have a significantly high number of macrophages compared to any other immune cell type (P-value $$<0.01$$ < 0.01 ). The third group of ccRCC tumors have a significantly higher number of CD8+ T-cells than any other immune cell type (P-value $$<0.01$$ < 0.01 ), while tumors in the group 4 have approximately the same numbers of macrophages and CD4+ T-cells and a significantly smaller number of CD8+ T-cells than CD4+ T-cells (P-value $$<0.01$$ < 0.01 ). Moreover, there is a high positive correlation between the expression levels of IFNG and PDCD1 and the percentage of CD8+ T-cells, and higher stage and grade of tumors have a substantially higher percentage of CD8+ T-cells. Furthermore, the primary tumors of patients, who are tumor free at the last time of follow up, have a significantly higher percentage of mast cells (P-value $$<0.01$$ < 0.01 ) compared to the patients with tumors for all groups of tumors except group 3.


Blood ◽  
2021 ◽  
Author(s):  
Christian M. Schürch ◽  
Chiara Caraccio ◽  
Martijn A. Nolte

The bone marrow (BM) is responsible for generating and maintaining lifelong output of blood and immune cells. Besides its key hematopoietic function, the BM acts as an important lymphoid organ, hosting a large variety of mature lymphocyte populations, including B-cells, T-cells, NK(T)-cells and innate lymphoid cells (ILCs). Many of these cell types are thought to only transiently visit the BM, but for others, like plasma cells and memory T-cells, the BM provides supportive niches that promote their long-term survival. Interestingly, accumulating evidence points towards an important role for mature lymphocytes in the regulation of hematopoietic stem cells (HSCs) and hematopoiesis in health and disease. In this review, we describe the diversity, migration, localization and function of mature lymphocyte populations in murine and human BM, focusing on their role in immunity and hematopoiesis. We also address how various BM lymphocyte subsets contribute to the development of aplastic anemia and immune thrombocytopenia, illustrating the complexity of these BM disorders, but also the underlying similarities and differences in their disease pathophysiology. Finally, we summarize the interactions between mature lymphocytes and BM resident cells in HSC transplantation and graft-versus-host disease. A better understanding of the mechanisms by which mature lymphocyte populations regulate BM function will likely improve future therapies for patients with benign and malignant hematological disorders.


Sign in / Sign up

Export Citation Format

Share Document