scholarly journals Dietary β-Carotene on Postpartum Uterine Recovery in Mice: Crosstalk Between Gut Microbiota and Inflammation

2021 ◽  
Vol 12 ◽  
Author(s):  
Xizi Yang ◽  
Ziyu He ◽  
Ruizhi Hu ◽  
Jiahao Yan ◽  
Qianjin Zhang ◽  
...  

As the precursor of vitamin A, β-carotene has a positive effect on reproductive performance. Our previous study has shown that β-carotene can increase antioxidant enzyme activity potentially through regulating gut microbiota in pregnant sows. This study aimed to clarify the effect of β-carotene on reproductive performance and postpartum uterine recovery from the aspect of inflammation and gut microbiota by using a mouse model. Twenty-seven 6 weeks old female Kunming mice were randomly assigned into 3 groups (n=9), and fed with a diet containing 0, 30 or 90 mg/kg β-carotene, respectively. The results showed that dietary supplementation of β-carotene reduced postpartum uterine hyperemia and uterine mass index (P<0.05), improved intestinal villus height and villus height to crypt depth ratio, decreased serum TNF-α and IL-4 concentration (P<0.05), while no differences were observed in litter size and litter weight among three treatments. Characterization of gut microbiota revealed that β-carotene up-regulated the relative abundance of genera Akkermansia, Candidatus Stoquefichus and Faecalibaculum, but down-regulated the relative abundance of Alloprevotella and Helicobacter. Correlation analysis revealed that Akkermansia was negatively correlated with the IL-4 concentration, while Candidatus Stoquefichus and Faecalibaculum had a negative linear correlation with both TNF-α and IL-4 concentration. On the other hand, Alloprevotella was positively correlated with the TNF-α, and Helicobacter had a positive correlation with both TNF-α and IL-4 concentration. These data demonstrated that dietary supplementation of β-carotene contributes to postpartum uterine recovery by decreasing postpartum uterine hemorrhage and inhibiting the production of inflammatory cytokines potentially through modulating gut microbiota.

2020 ◽  
Vol 7 ◽  
Author(s):  
Xupeng Yuan ◽  
Jiahao Yan ◽  
Ruizhi Hu ◽  
Yanli Li ◽  
Ying Wang ◽  
...  

Recent evidences suggest that gut microbiota plays an important role in regulating physiological and metabolic activities of pregnant sows, and β-carotene has a potentially positive effect on reproduction, but the impact of β-carotene on gut microbiota in pregnant sows remains unknown. This study aimed to explore the effect and mechanisms of β-carotene on the reproductive performance of sows from the aspect of gut microbiota. A total of 48 hybrid pregnant sows (Landrace × Yorkshire) with similar parity were randomly allocated into three groups (n = 16) and fed with a basal diet or a diet containing 30 or 90 mg/kg of β-carotene from day 90 of gestation until parturition. Dietary supplementation of 30 or 90 mg/kg β-carotene increased the number of live birth to 11.82 ± 1.54 and 12.29 ± 2.09, respectively, while the control group was 11.00 ± 1.41 (P = 0.201). Moreover, β-carotene increased significantly the serum nitric oxide (NO) level and glutathione peroxidase (GSH-Px) activity (P < 0.05). Characterization of fecal microbiota revealed that 90 mg/kg β-carotene increased the diversity of the gut flora (P < 0.05). In particular, β-carotene decreased the relative abundance of Firmicutes including Lachnospiraceae AC2044 group, Lachnospiraceae NK4B4 group and Ruminococcaceae UCG-008, but enriched Proteobacteria including Bilophila and Sutterella, and Actinobacteria including Corynebacterium and Corynebacterium 1 which are related to NO synthesis. These data demonstrated that dietary supplementation of β-carotene may increase antioxidant enzyme activity and NO, an important vasodilator to promote the neonatal blood circulation, through regulating gut microbiota in sows.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hye-Jin Kim ◽  
Dongwook Kim ◽  
Kwan-Woo Kim ◽  
Sang-Hoon Lee ◽  
Aera Jang

AbstractWe used 16S ribosomal RNA sequencing to evaluate changes in the gut microbiota of mice fed a diet supplemented with either raw or cooked beef loin powder for 9 weeks. Male BALB/c mice (n = 60) were randomly allocated to five groups: mice fed AIN-93G chow (CON), chow containing 5% (5RB) and 10% (10RB) raw beef loin powder, and chow containing 5% (5CB) and 10% (10CB) cooked beef loin powder. Dietary supplementation with both RB and CB increased the relative abundance of Clostridiales compared to the CON diet (p < 0.05). Mice fed 10RB showed a significantly higher relative abundance of Firmicutes (p = 0.018) and Lactobacillus (p = 0.001) than CON mice, and the ratio of Firmicutes/Bacteroidetes showed an increasing trend in the 10RB mice (p > 0.05). Mice fed 10CB showed a higher abundance of Peptostreptococcaceae and a lower abundance of Desulfovibrionaceae compared with the CON mice (p < 0.05). Genes for glycan biosynthesis, which result in short-chain fatty acid synthesis, were enriched in the CB mice compared to the RB mice, which was correlated to a high abundance of Bacteroides. Overall, dietary RB and CB changed the gut microbiota of mice (p < 0.05).


Author(s):  
Qifan Zhou ◽  
Hailin Zhang ◽  
Lixia Yin ◽  
Guilian Li ◽  
Wenxue Liang ◽  
...  

Abstract Purpose Maintenance hemodialysis (MHD) patients are at high risk of sarcopenia. Gut microbiota affects host metabolic and may act in the occurrence of sarcopenia importantly. This study aimed to study the characterization of the gut microbiota in MHD patients with sarcopenia, and to further reveal the complex pathophysiology of sarcopenia in MHD patients. Methods Fecal samples and clinical data were collected from 30 MHD patients with sarcopenia, and 30 age-and-sex-matched MHD patients without sarcopenia in 1 general hospital of Jiangsu Province from December 2020 to March 2021. 16S rRNA sequencing technology was used to analyze the genetic sequence of the gut microbiota for evaluation of the diversity, species composition, and differential microbiota of the two groups. Results Compared to MHD patients without sarcopenia, the ACE index of patients with sarcopenia was lower (P = 0.014), and there was a structural difference in the β-diversity between the two groups (P = 0.001). At the genus level, the relative abundance of Tyzzerella_4 in the sarcopenia group was significantly higher than in the non-sarcopenia group (P = 0.039), and the relative abundance of Megamonas (P = 0.004), Coprococcus_2 (P = 0.038), and uncultured_bacterium_f_Muribaculaceae (P = 0.040) decreased significantly. Conclusion The diversity and structure of the gut microbiota of MHD patients with sarcopenia were altered. The occurrence of sarcopenia in MHD patients may be influenced by gut microbiota.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaoyu Wu ◽  
Shengnan Yin ◽  
Chuanshang Cheng ◽  
Chuanhui Xu ◽  
Jian Peng

Interaction between the dietary fiber and the gut microbes can regulate host bile acid metabolism. This study sought to explore the effects of guar gum combined with pregelatinized waxy maize starch (GCW) in a gestation diet on reproductive performance, gut microbiota composition, and bile acid homeostasis of sows. A total of 61 large white sows were randomly grouped into the control (n = 33) and 2% GCW (n = 28) groups during gestation. GCW diet increased birth-weight of piglets, and decreased the percentage of intrauterine growth restriction (IUGR) piglets. In addition, dietary GCW reduced gut microbial diversity and modulated gut microbial composition in sows on day 109 of gestation. The relative abundance of bile salt hydrolase (BSH) gene-encoding bacteria, Lactobacillus and Bacteroides decreased after GCW administration, whereas no significant difference was observed in the fecal level of total glycine-conjugated and taurine-conjugated bile acids between the two groups. Dietary GCW increased the relative abundance of Ruminococcaceae (one of few taxa comprising 7α-dehydroxylating bacteria), which was associated with elevated fecal deoxycholic acid (DCA) in the GCW group. GCW administration lowered the concentrations of plasma total bile acid (TBA) and 7α-hydroxy-4-cholesten-3-one (C4) (reflecting lower hepatic bile acid synthesis) at day 90 and day 109 of gestation compared with the control diet. Furthermore, the levels of plasma glycoursodeoxycholic acid (GUDCA), tauroursodeoxycholic acid (TUDCA) and glycohyocholic acid (GHCA) were lower in the GCW group compared with the control group. Spearman correlation analysis showed alterations in the composition of the gut microbiota by GCW treatment was associated with improved bile acid homeostasis and reproductive performance of sows. In conclusion, GCW-induced improves bile acid homeostasis during gestation which may enhance reproductive performance of sows.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xiaojing Wang ◽  
Tong Wang ◽  
Qian Zhang ◽  
Li Xu ◽  
Xinhua Xiao

Aims. Accumulating evidence indicates gut microbiota dysbiosis is involved in metabolic disorders, including prediabetes. The prebiotic inulin has been frequently reported to exert beneficial effects on the host metabolism. Here, we aimed to evaluate whether dietary supplementation with inulin modulates gut microbiota structure in prediabetes, affecting glucose and lipid metabolism. Methods. We performed a prospective single-arm study. A total of 49 subjects with prediabetes (WHO 1999 criteria) were voluntarily enrolled. Each subject received a daily supplement with 15 g of inulin for 6 months. Glucose and lipid metabolic parameters and gut microbiota were analyzed at baseline and at 3 and 6 months after inulin intervention. Intestinal microbiota profile was evaluated using the Illumina MiSeq platform based on V3-V4 bacterial 16S rRNA gene. Results. The mean age of 49 subjects was 56.6 ± 6.9 years and BMI was 25.07 ± 3.02 kg/m2. After 24 weeks of prevention, inulin significantly decreased fasting insulin (2.38 ± 0.50 vs. 2.22 ± 0.62, P = 0.03 ) and 2-hour post-OGTT insulin (4.01 ± 0.77 vs. 3.74 ± 0.76, P = 0.02 ) and improved HOMA-IR (1.05 ± 0.53 vs. 0.85 ± 0.66, P = 0.03 ). Gut microbiota analysis indicated that inulin supplement resulted in an increase in the relative abundance of Actinobacteria, Bifidobacteriales, Bifidobacteriaceae, Lactobacillaceae, Bifidobacterium, Lactobacillus, and Anaerostipes both at 3 and 6 months, while with a decrease in the relative abundance of Alistipes. Spearman correlation analysis revealed altered microbial community was associated with glucose and lipids metabolic parameters. Conclusions. Inulin supplementation improves insulin resistance of prediabetes and exerts beneficial effects on modulating the intestinal microbiota composition. These findings suggest that insulin may be a potentially novel and inexpensive intervention for prediabetes.


2021 ◽  
Vol 11 ◽  
Author(s):  
Longlin Zhang ◽  
Xueling Gu ◽  
Jie Wang ◽  
Shuang Liao ◽  
Yehui Duan ◽  
...  

To investigate the effects of dietary isomaltooligosaccharide (IMO) levels on the gut microbiota, immune function of sows, and the diarrhea rate of their offspring, 120 multiparous gestating pig improvement company (PIC) sows with similar body conditions were selected and fed 1 of 6 diets: a basal diet with no supplement (control, CON), or a diet supplemented with 2.5 g/kg, 5.0 g/kg, 10.0 g/kg, 20.0 g/kg, or 40.0 g/kg IMO (IMO1, IMO2, IMO3, IMO4, or IMO5 group, respectively). Results showed that dietary treatments did not affect the reproductive performance and colostrum composition of sows (P &gt; 0.05). However, compared to the CON, IMO reduced the diarrhea rate of suckling piglets (P &lt; 0.05) and improved the concentrations of colostrum IgA, IgG, and IgM (P &lt; 0.05). Moreover, IMO decreased the concentrations of serum D-lactate (D-LA) and lipopolysaccharides (LPS) at farrowing and day 18 of lactation (L18) (P &lt; 0.05). High-throughput pyrosequencing of the 16S rRNA demonstrated that IMO shaped the composition of gut microbiota in different reproductive stages (day 107 of gestation, G107; day 10 of lactation, L10) (P &lt; 0.05). At the genus level, the relative abundance of g_Parabacteroides and g_Slackia in G107 and g_Unclassified_Peptostreptococcaceae, g_Turicibacter, g_Sarcina, and g_Coprococcus in L10 was increased in IMO groups but the g_YRC22 in G107 was decreased in IMO groups relative to the CON group (P &lt; 0.05). Furthermore, the serum D-LA and LPS were negatively correlated with the genus g_Akkermansia and g_Parabacteroides but positively correlated with the genus g_YRC22 and g_Unclassified_Peptostreptococcaceae. Additionally, the colostrum IgA, IgG, and IgM of sows were positively correlated with the genus g_Parabacteroides, g_Sarcina, and g_Coprococcus but negatively correlated with the genus g_YRC22. These findings indicated that IMO could promote the immune activation and had a significant influence in sows’ gut microbiota during perinatal period, which may reduce the diarrhea rate of their offspring.


Author(s):  
Fan Wan ◽  
Mengyu Wang ◽  
Ruqing Zhong ◽  
Liang Chen ◽  
Hui Han ◽  
...  

Colitis, a chronic inflammatory bowel disease, is characterized by bloody diarrhea and inflammation in the colon. Lonicera hypoglauca (“Shanyinhua” in Chinese) and Scutellaria baicalensis (“Huangqin” in Chinese) are two traditional Chinese medicinal plants rich in polyphenols, such as chlorogenic acid (CGA) and baicalin (BA), with the effects of anti-inflammation and antioxidation. However, it remains unknown whether extracts from L. hypoglauca and S. baicalensis (LSEs) could mitigate colonic inflammation. In the present study, ICR mice (22.23 ± 1.65 g) were allocated to three groups treated with chow diet without (CON) or with dextran sulfate sodium (DSS) (CON+DSS) in water or LSE supplementation in diet with DSS (LSE+DSS), and then inflammatory and oxidative parameters and colonic microbiota were detected. The results showed that LSE (500 mg/kg) treatment mitigated DSS-induced colitis symptoms and restored the shortened colon length, the increased disease activity index (DAI), and the damaged intestinal barrier. In serum, LSE supplementation significantly decreased levels of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and lipopolysaccharide (LPS) and increased IL-10 level. Meanwhile, superoxide dismutase (SOD) and catalase (CAT) were increased, and malondialdehyde (MDA) and reactive oxygen species (ROS) levels were decreased. In the colon tissue, qPCR results showed that LSE supplementation dramatically downregulated the transcriptional expression of IL-1β, IL-6, TNF-α, and MDA and upregulated the expression of SOD1, CAT, and IL-10. Additionally, the damaged gut barriers occludin and zonula occludens-1 (ZO-1) in the CON+DSS group were enhanced with LSE supplementation. Furthermore, LSE treatment regulated the gut microbial communities with higher relative abundance of Dubosiella and Ruminococcus torques group and lower relative abundance of Bacteroides and Turicibacter. Moreover, the contents of short-chain fatty acids (SCFAs) as products of gut microbiota were also increased. Correlation analysis showed that the mRNA expression of SOD1 was negatively correlated with TNF-α (r = -0.900, P &lt; 0.05); the mRNA expression of IL-6 (r = -0.779, P &lt; 0.05) and TNF-α (r = -0.703, P &lt; 0.05) had a dramatically negative correlation with Dubosiella. In conclusion, LSE supplementation could effectively ameliorate inflammation by modulating oxidative stress and gut microbiota in a colitis mouse model.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3245 ◽  
Author(s):  
Xue-Wen Li ◽  
Hui-Ping Chen ◽  
Ying-Yan He ◽  
Wei-Li Chen ◽  
Jian-Wen Chen ◽  
...  

Dendrobium is a traditional Chinese herb with anti-diabetic effects and has diverse bibenzyls as well as phenanthrenes. Little is known about Dendrobium polyphenols anti-diabetic activities, so, a rich-polyphenols extract of D. loddigesii (DJP) was used for treatment of diabetic db/db mice; the serum biochemical index and tissue appearance were evaluated. In order to gain an insight into the anti-diabetic mechanism, the oxidative stress index, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and gut microbiota modulation were determined by ELISA, immunohistochemistry or high throughput sequencing 16S rRNA gene. The results revealed that DJP had the effects to decrease the blood glucose, body weight, low density lipoprotein cholesterol (LDL-C) levels and increase insulin (INS) level in the mice. DJP improved the mice fatty liver and diabetic nephropathy. DJP showed the anti-oxidative abilities to reduce the malondialdehyde (MDA) level and increase the contents of superoxide dismutase (SOD), catalase (CAT) as well as glutathione (GSH). DJP exerted the anti-inflammatory effects of decreasing expression of IL-6 and TNF-α. After treatment of DJP, the intestinal flora balance of the mice was ameliorated, increasing Bacteroidetes to Firmicutes ratios as well as the relative abundance of Prevotella/Akkermansia and reducing the relative abundance of S24-7/Rikenella/Escherichia coli. The function’s prediction of gut microbiota indicated that the microbial compositions involved carbohydrate metabolism or lipid metabolism were changed. This study revealed for the first time that DJP improves the mice symptoms of diabetes and complications, which might be due to the effects that DJP induced the decrease of inflammation as well as oxidative stress and improvement of intestinal flora balance.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2947 ◽  
Author(s):  
Joy Son ◽  
Lae-Guen Jang ◽  
Byung-Yong Kim ◽  
Sunghee Lee ◽  
Hyon Park

Studies investigating exercise-induced gut microbiota have reported that people who exercise regularly have a healthy gut microbial environment compared with sedentary individuals. In contrast, recent studies have shown that high protein intake without dietary fiber not only offsets the positive effect of exercise on gut microbiota but also significantly lowers the relative abundance of beneficial bacteria. In this study, to resolve this conundrum and find the root cause, we decided to narrow down subjects according to diet. Almost all of the studies had subjects on an ad libitum diet, however, we wanted subjects on a simplified diet. Bodybuilders who consumed an extremely high-protein/low-carbohydrate diet were randomly assigned to a probiotics intake group (n = 8) and a placebo group (n = 7) to find the intervention effect. Probiotics, comprising Lactobacillus acidophilus, L. casei, L. helveticus, and Bifidobacterium bifidum, were consumed for 60 days. As a result, supplement intake did not lead to a positive effect on the gut microbial environment or concentration of short-chain fatty acids (SCFAs). It has been shown that probiotic intake is not as effective as ergogenic aids for athletes such as bodybuilders with extreme dietary regimens, especially protein and dietary fiber. To clarify the influence of nutrition-related factors that affect the gut microbial environment, we divided the bodybuilders (n = 28) into groups according to their protein and dietary fiber intake and compared their gut microbial environment with that of sedentary male subjects (n = 15). Based on sedentary Korean recommended dietary allowance (KRDA), the bodybuilders′ intake of protein and dietary fiber was categorized into low, proper, and excessive groups, as follows: high-protein/restricted dietary fiber (n = 12), high-protein/adequate dietary fiber (n = 10), or adequate protein/restricted dietary fiber (n = 6). We found no significant differences in gut microbial diversity or beneficial bacteria between the high-protein/restricted dietary fiber and the healthy sedentary groups. However, when either protein or dietary fiber intake met the KRDA, gut microbial diversity and the relative abundance of beneficial bacteria showed significant differences to those of healthy sedentary subjects. These results suggest that the positive effect of exercise on gut microbiota is dependent on protein and dietary fiber intake. The results also suggest that the question of adequate nutrition should be addressed before supplementation with probiotics to derive complete benefits from the intervention.


Sign in / Sign up

Export Citation Format

Share Document