scholarly journals Molecular Analysis of Glutamate Decarboxylases in Enterococcus avium

2021 ◽  
Vol 12 ◽  
Author(s):  
Xinyi Gu ◽  
Jiancun Zhao ◽  
Rongling Zhang ◽  
Ruohan Yu ◽  
Tingting Guo ◽  
...  

Enterococcus avium (E. avium) is a common bacterium inhabiting the intestines of humans and other animals. Most strains of this species can produce gamma-aminobutyric acid (GABA) via the glutamate decarboxylase (GAD) system, but the presence and genetic organization of their GAD systems are poorly characterized. In this study, our bioinformatics analyses showed that the GAD system in E. avium strains was generally encoded by three gadB genes (gadB1, gadB2, and gadB3), together with an antiporter gene (gadC) and regulator gene (gadR), and these genes are organized in a cluster. This finding contrasts with that for other lactic acid bacteria. E. avium SDMCC050406, a GABA producer isolated from human feces, was employed to investigate the contribution of the three gadB genes to GABA biosynthesis. The results showed that the relative expression level of gadB3 was higher than those of gadB1 and gadB2 in the exponential growth and stationary phases, and this was accompanied by the synchronous transcription of gadC. After heterologous expression of the three gadB genes in Escherichia coli BL21 (DE3), the Km value of the purified GAD3 was 4.26 ± 0.48 mM, a value lower than those of the purified GAD1 and GAD2. Moreover, gadB3 gene inactivation caused decreased GABA production, accompanied by a reduction in resistance to acid stress. These results indicated that gadB3 plays a crucial role in GABA biosynthesis and this property endowed the strain with acid tolerance. Our findings provided insights into how E. avium strains survive the acidic environments of fermented foods and throughout transit through the stomach and gut while maintaining cell viability.

2020 ◽  
Vol 21 (3) ◽  
pp. 995 ◽  
Author(s):  
Yanhua Cui ◽  
Kai Miao ◽  
Siripitakyotin Niyaphorn ◽  
Xiaojun Qu

Gamma-aminobutyric acid (GABA) is widely distributed in nature and considered a potent bioactive compound with numerous and important physiological functions, such as anti-hypertensive and antidepressant activities. There is an ever-growing demand for GABA production in recent years. Lactic acid bacteria (LAB) are one of the most important GABA producers because of their food-grade nature and potential of producing GABA-rich functional foods directly. In this paper, the GABA-producing LAB species, the biosynthesis pathway of GABA by LAB, and the research progress of glutamate decarboxylase (GAD), the key enzyme of GABA biosynthesis, were reviewed. Furthermore, GABA production enhancement strategies are reviewed, from optimization of culture conditions and genetic engineering to physiology-oriented engineering approaches and co-culture methods. The advances in both the molecular mechanisms of GABA biosynthesis and the technologies of synthetic biology and genetic engineering will promote GABA production of LAB to meet people’s demand for GABA. The aim of the review is to provide an insight of microbial engineering for improved production of GABA by LAB in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nize Otaru ◽  
Kun Ye ◽  
Denisa Mujezinovic ◽  
Laura Berchtold ◽  
Florentin Constancias ◽  
...  

The high neuroactive potential of metabolites produced by gut microbes has gained traction over the last few years, with metagenomic-based studies suggesting an important role of microbiota-derived γ-aminobutyric acid (GABA) in modulating mental health. Emerging evidence has revealed the presence of the glutamate decarboxylase (GAD)-encoding gene, a key enzyme to produce GABA, in the prominent human intestinal genus Bacteroides. Here, we investigated GABA production by Bacteroides in culture and metabolic assays combined with comparative genomics and phylogenetics. A total of 961 Bacteroides genomes were analyzed in silico and 17 metabolically and genetically diverse human intestinal isolates representing 11 species were screened in vitro. Using the model organism Bacteroides thetaiotaomicron DSM 2079, we determined GABA production kinetics, its impact on milieu pH, and we assessed its role in mitigating acid-induced cellular damage. We showed that the GAD-system consists of at least four highly conserved genes encoding a GAD, a glutaminase, a glutamate/GABA antiporter, and a potassium channel. We demonstrated a high prevalence of the GAD-system among Bacteroides with 90% of all Bacteroides genomes (96% in human gut isolates only) harboring all genes of the GAD-system and 16 intestinal Bacteroides strains producing GABA in vitro (ranging from 0.09 to 60.84 mM). We identified glutamate and glutamine as precursors of GABA production, showed that the production is regulated by pH, and that the GAD-system acts as a protective mechanism against acid stress in Bacteroides, mitigating cell death and preserving metabolic activity. Our data also indicate that the GAD-system might represent the only amino acid-dependent acid tolerance system in Bacteroides. Altogether, our results suggest an important contribution of Bacteroides in the regulation of the GABAergic system in the human gut.


2020 ◽  
Vol 9 (1) ◽  
pp. 33
Author(s):  
Jirapat Kanklai ◽  
Tasneem Chemama Somwong ◽  
Patthanasak Rungsirivanich ◽  
Narumol Thongwai

Gamma-aminobutyric acid (GABA), the inhibitory neurotransmitter, can be naturally synthesized by a group of lactic acid bacteria (LAB) which is commonly found in rich carbohydrate materials such as fruits and fermented foods. Thirty-six isolates of GABA-producing LAB were obtained from Thai fermented foods. Among these, Levilactobacillus brevis F064A isolated from Thai fermented sausage displayed high GABA content, 2.85 ± 0.10 mg/mL and could tolerate acidic pH and bile salts indicating a promising probiotic. Mulberry (Morus sp.) is widely grown in Thailand. Many mulberry fruits are left to deteriorate during the high season. To increase its value, mulberry juice was prepared and added to monosodium glutamate (MSG), 2% (w/v) prior to inoculation with 5% (v/v) of L. brevis F064A and incubated at 37 °C for 48 h to obtain the GABA-fermented mulberry juice (GABA-FMJ). The GABA-FMJ obtained had 3.31 ± 0.06 mg/mL of GABA content, 5.58 ± 0.52 mg gallic acid equivalent/mL of antioxidant activity, 234.68 ± 15.53 mg cyanidin-3-glucoside/mL of anthocyanin, an ability to inhibit growth of Bacillus cereus TISTR 687, Salmonella Typhi DMST 22842 and Shigella dysenteriae DMST 1511, and 10.54 ± 0.5 log10 colony-forming units (CFU)/mL of viable L. brevis F064A cell count. This GABA-FMJ was considered as a potential naturally functional food for human of all ages.


2016 ◽  
Vol 473 (23) ◽  
pp. 4311-4325 ◽  
Author(s):  
Joana F. Guerreiro ◽  
Alexander Muir ◽  
Subramaniam Ramachandran ◽  
Jeremy Thorner ◽  
Isabel Sá-Correia

Acetic acid-induced inhibition of yeast growth and metabolism limits the productivity of industrial fermentation processes, especially when lignocellulosic hydrolysates are used as feedstock in industrial biotechnology. Tolerance to acetic acid of food spoilage yeasts is also a problem in the preservation of acidic foods and beverages. Thus understanding the molecular mechanisms underlying adaptation and tolerance to acetic acid stress is increasingly important in industrial biotechnology and the food industry. Prior genetic screens for Saccharomyces cerevisiae mutants with increased sensitivity to acetic acid identified loss-of-function mutations in the YPK1 gene, which encodes a protein kinase activated by the target of rapamycin (TOR) complex 2 (TORC2). We show in the present study by several independent criteria that TORC2–Ypk1 signaling is stimulated in response to acetic acid stress. Moreover, we demonstrate that TORC2-mediated Ypk1 phosphorylation and activation is necessary for acetic acid tolerance, and occurs independently of Hrk1, a protein kinase previously implicated in the cellular response to acetic acid. In addition, we show that TORC2–Ypk1-mediated activation of l-serine:palmitoyl-CoA acyltransferase, the enzyme complex that catalyzes the first committed step of sphingolipid biosynthesis, is required for acetic acid tolerance. Furthermore, analysis of the sphingolipid pathway using inhibitors and mutants indicates that it is production of certain complex sphingolipids that contributes to conferring acetic acid tolerance. Consistent with that conclusion, promoting sphingolipid synthesis by adding exogenous long-chain base precursor phytosphingosine to the growth medium enhanced acetic acid tolerance. Thus appropriate modulation of the TORC2–Ypk1–sphingolipid axis in industrial yeast strains may have utility in improving fermentations of acetic acid-containing feedstocks.


2000 ◽  
Vol 66 (9) ◽  
pp. 3911-3916 ◽  
Author(s):  
Sang Ho Choi ◽  
David J. Baumler ◽  
Charles W. Kaspar

ABSTRACT An Escherichia coli O157:H7dps::nptI mutant (FRIK 47991) was generated, and its survival was compared to that of the parent in HCl (synthetic gastric fluid, pH 1.8) and hydrogen peroxide (15 mM) challenges. The survival of the mutant in log phase (5-h culture) was significantly impaired (4-log10-CFU/ml reduction) compared to that of the parent strain (ca. 1.0-log10-CFU/ml reduction) after a standard 3-h acid challenge. Early-stationary-phase cells (12-h culture) of the mutant decreased by ca. 4 log10CFU/ml while the parent strain decreased by approximately 2 log10 CFU/ml. No significant differences in the survival of late-stationary-phase cells (24-h culture) between the parent strain and the mutant were observed, although numbers of the parent strain declined less in the initial 1 h of acid challenge. FRIK 47991 was more sensitive to hydrogen peroxide challenge than was the parent strain, although survival improved in stationary phase. Complementation of the mutant with a functional dps gene restored acid and hydrogen peroxide tolerance to levels equal to or greater than those exhibited by the parent strain. These results demonstrate that decreases in survival were from the absence of Dps or a protein regulated by Dps. The results from this study establish that Dps contributes to acid tolerance in E. coli O157:H7 and confirm the importance of Dps in oxidative stress protection.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 561 ◽  
Author(s):  
Kei-Anne Baritugo ◽  
Hee Taek Kim ◽  
Mi Na Rhie ◽  
Seo Young Jo ◽  
Tae Uk Khang ◽  
...  

Corynebacterium glutamicum is an industrial strain used for the production of valuable chemicals such as L-lysine and L-glutamate. Although C. glutamicum has various industrial applications, a limited number of tunable systems are available to engineer it for efficient production of platform chemicals. Therefore, in this study, we developed a novel tunable promoter system based on repeats of the Vitreoscilla hemoglobin promoter (Pvgb). Tunable expression of green fluorescent protein (GFP) was investigated under one, four, and eight repeats of Pvgb (Pvgb, Pvgb4, and Pvgb8). The intensity of fluorescence in recombinant C. glutamicum strains increased as the number of Pvgb increased from single to eight (Pvgb8) repeats. Furthermore, we demonstrated the application of the new Pvgb promoter-based vector system as a platform for metabolic engineering of C. glutamicum by investigating 5-aminovaleric acid (5-AVA) and gamma-aminobutyric acid (GABA) production in several C. glutamicum strains. The profile of 5-AVA and GABA production by the recombinant strains were evaluated to investigate the tunable expression of key enzymes such as DavBA and GadBmut. We observed that 5-AVA and GABA production by the recombinant strains increased as the number of Pvgb used for the expression of key proteins increased. The recombinant C. glutamicum strain expressing DavBA could produce higher amounts of 5-AVA under the control of Pvgb8 (3.69 ± 0.07 g/L) than the one under the control of Pvgb (3.43 ± 0.10 g/L). The average gamma-aminobutyric acid production also increased in all the tested strains as the number of Pvgb used for GadBmut expression increased from single (4.81–5.31 g/L) to eight repeats (4.94–5.58 g/L).


2020 ◽  
Vol 6 (4) ◽  
pp. 348
Author(s):  
Isabella Zangl ◽  
Reinhard Beyer ◽  
Ildiko-Julia Pap ◽  
Joseph Strauss ◽  
Christoph Aspöck ◽  
...  

Several Candida species are opportunistic human fungal pathogens and thrive in various environmental niches in and on the human body. In this study we focus on the conditions of the vaginal tract, which is acidic, hypoxic, glucose-deprived, and contains lactic acid. We quantitatively analyze the lactic acid tolerance in glucose-rich and glucose-deprived environment of five Candida species: Candidaalbicans, Candida glabrata, Candida parapsilosis, Candida krusei and Candida tropicalis. To characterize the phenotypic space, we analyzed 40–100 clinical isolates of each species. Each Candida species had a very distinct response pattern to lactic acid stress and characteristic phenotypic variability. C. glabrata and C. parapsilosis were best to withstand high concentrations of lactic acid with glucose as carbon source. A glucose-deprived environment induced lactic acid stress tolerance in all species. With lactate as carbon source the growth rate of C. krusei is even higher compared to glucose, whereas the other species grow slower. C. krusei may use lactic acid as carbon source in the vaginal tract. Stress resistance variability was highest among C. parapsilosis strains. In conclusion, each Candida spp. is adapted differently to cope with lactic acid stress and resistant to physiological concentrations.


2004 ◽  
Vol 70 (9) ◽  
pp. 5315-5322 ◽  
Author(s):  
M. Andrea Azcarate-Peril ◽  
Eric Altermann ◽  
Rebecca L. Hoover-Fitzula ◽  
Raul J. Cano ◽  
Todd R. Klaenhammer

ABSTRACT Amino acid decarboxylation-antiporter reactions are one of the most important systems for maintaining intracellular pH between physiological limits under acid stress. We analyzed the Lactobacillus acidophilus NCFM complete genome sequence and selected four open reading frames with similarities to genes involved with decarboxylation reactions involved in acid tolerance in several microorganisms. Putative genes encoding an ornithine decarboxylase, an amino acid permease, a glutamate γ-aminobutyrate antiporter, and a transcriptional regulator were disrupted by insertional inactivation. The ability of L. acidophilus to survive low-pH conditions, such as those encountered in the stomach or fermented dairy foods, was investigated and compared to the abilities of early- and late-stationary-phase cells of the mutants by challenging them with a variety of acidic conditions. All of the integrants were more sensitive to low pH than the parental strain. Interestingly, each integrant also exhibited an adaptive acid response during logarithmic growth, indicating that multiple mechanisms are present and orchestrated in L. acidophilus in response to acid challenge.


2004 ◽  
Vol 67 (1) ◽  
pp. 19-26 ◽  
Author(s):  
D. ELHANAFI ◽  
B. LEENANON ◽  
W. BANG ◽  
M. A. DRAKE

The effect of extended cold or cold-acid storage ofEscherichia coli O157:H7 on subsequent acid tolerance, freeze-thaw survival, heat tolerance, and virulence factor (Shiga toxin, intimin, and hemolysin) expression was determined. ThreeE. coli O157:H7 strains were stressed at 4°C in TSB or pH 5.5 TSB for 4 weeks. The acid (TSB [pH 2.0] or simulated gastric fluid [pH 1.5]) tolerance, freeze-thaw (−20°C to 21°C) survival, and heat (56°C) tolerance of stressed cells were compared with those of control cells. The β-galactosidase activities of stressed and control cells containing a lacZ gene fusion in the stx2, eaeA, or hlyA gene were determined following stress in TSB or pH 5.5 TSB at 37°C and in the exponential and stationary phases. Cold and cold-acid stresses decreased acid tolerance (P < 0.05), with a larger decrease in acid tolerance being observed after cold stress than after cold-acid stress (P < 0.05). Cold stress increased freeze-thaw survival for all three strains (P < 0.05). Prior cold or cold-acid stress had no effect on virulence factor production (P > 0.05), although growth in acidic media (pH 5.5) enhanced eaeA and hlyA expression (P < 0.05). These results indicate that the prolonged storage ofE. coli O157: H7 at 4°C has substantial effects on freeze-thaw tolerance but does not affect subsequent virulence gene expression.


Sign in / Sign up

Export Citation Format

Share Document