scholarly journals Influence of Microplastics on the Growth and the Intestinal Microbiota Composition of Brine Shrimp

2021 ◽  
Vol 12 ◽  
Author(s):  
Hongyu Li ◽  
Hongwei Chen ◽  
Jiao Wang ◽  
Jiayao Li ◽  
Sitong Liu ◽  
...  

Microplastics (MPs) are ubiquitous in the aquatic environment and can be frequently ingested by zooplankton, leading to various effects. Brine shrimp (Artemia parthenogenetica) has an important role in the energy flow through trophic levels in different seawater systems. In this work, the influence of polyethylene (PE) and polystyrene (PS) MPs on the growth of brine shrimp and corresponding changes of gut microbiota were investigated. Our results showed that the MPs remarkably reduced the growth rate of brine shrimp, and the two types of MPs have different impacts. The average body length of brine shrimps was reduced by 17.92 and 14.95% in the PE group and PS group, respectively. MPs are mainly found in the intestine, and their exposure evidently affects the gut microbiota. By using 16S rRNA gene high-throughput sequencing, 32 phyla of bacteria were detected in the intestine, and the microbiome consisted mainly of Proteobacteria, Firmicutes, and Actinobacteria. MPs’ exposure significantly increased the gut microbial diversity. For the PE group, the proportion of Actinobacteria and Bacteroidetes increased by 45.26 and 2.73%, respectively. For the PS group, it was 54.95 and 1.27%, respectively. According to the analysis on genus level, the proportions of Ponticoccus, Seohaeicola, Polycyclovorans, and Methylophaga decreased by 46.38, 1.24, 1.07, and 2.66%, respectively, for the PE group and 57.87, 1.43, 0.88, and 2.24%, respectively, for the PS group. In contrast, the proportions of Stappia, Microbacterium, and Dietzia increased by 1.12, 23.27, and 11.59%, respectively, for the PE group, and 1.09, 3.79, and 42.96%, respectively, for the PS group. These experimental results demonstrated that the ingestion of MPs by brine shrimp can alter the composition of the gut microbiota and lead to a slow growth rate. This study provides preliminary data support for understanding the biotoxicity of MPs to invertebrate zooplankton and is conducive to the further risk assessment of MP exposure.

2021 ◽  
Vol 17 ◽  
pp. 117693432199635
Author(s):  
Daoxin Liu ◽  
Pengfei Song ◽  
Jingyan Yan ◽  
Haijing Wang ◽  
Zhenyuan Cai ◽  
...  

Wild-caught animals must cope with drastic lifestyle and dietary changes after being induced to captivity. How the gut microbiome structure of these animals will change in response receives increasing attention. The plateau zokor ( Eospalax baileyi), a typic subterranean rodent endemic to the Qinghai-Tibet plateau, spends almost the whole life underground and is well adapted to the environmental pressures of both plateau and underground. However, how the gut microbiome of the plateau zokor will change in response to captivity has not been reported to date. This study compared the microbial community structure and functions of 22 plateau zokors before (the WS group) and after being kept in captivity for 15 days (the LS group, fed on carrots) using the 16S rRNA gene via high-throughput sequencing technology. The results showed that the LS group retained 973 of the 977 operational taxonomic units (OTUs) in the WS group, and no new OTUs were found in the LS group. The dominant bacterial phyla were Bacteroides and Firmicutes in both groups. In alpha diversity analysis, the Shannon, Sobs, and ACE indexes of the LS group were significantly lower than those of the WS group. A remarkable difference ( P < 0.01) between groups was also detected in beta diversity analysis. The UPGMA clustering, NMDS, PCoA, and Anosim results all showed that the intergroup difference was significantly greater than the intragroup difference. And compared with the WS group, the intragroup difference of the gut microbiota in the LS group was much larger, which failed to support the assumption that similar diets should drive convergence of gut microbial communities. PICRUSt revealed that although some functional categories displayed significant differences between groups, the relative abundances of these categories were very close in both groups. Based on all the results, we conclude that as plateau zokors enter captivity for a short time, although the relative abundances of different gut microbiota categories shifted significantly, they can maintain almost all the OTUs and the functions of the gut microbiota in the wild. So, the use of wild-caught plateau zokors in gut microbial studies is acceptable if the time in captivity is short.


2013 ◽  
Vol 80 (2) ◽  
pp. 478-485 ◽  
Author(s):  
Yue Tang ◽  
Anthony Underwood ◽  
Adriana Gielbert ◽  
Martin J. Woodward ◽  
Liljana Petrovska

ABSTRACTThe animal gastrointestinal tract houses a large microbial community, the gut microbiota, that confers many benefits to its host, such as protection from pathogens and provision of essential metabolites. Metagenomic approaches have defined the chicken fecal microbiota in other studies, but here, we wished to assess the correlation between the metagenome and the bacterial proteome in order to better understand the healthy chicken gut microbiota. Here, we performed high-throughput sequencing of 16S rRNA gene amplicons and metaproteomics analysis of fecal samples to determine microbial gut composition and protein expression. 16 rRNA gene sequencing analysis identifiedClostridiales,Bacteroidaceae, andLactobacillaceaespecies as the most abundant species in the gut. For metaproteomics analysis, peptides were generated by using the Fasp method and subsequently fractionated by strong anion exchanges. Metaproteomics analysis identified 3,673 proteins. Among the most frequently identified proteins, 380 proteins belonged toLactobacillusspp., 155 belonged toClostridiumspp., and 66 belonged toStreptococcusspp. The most frequently identified proteins were heat shock chaperones, including 349 GroEL proteins, from many bacterial species, whereas the most abundant enzymes were pyruvate kinases, as judged by the number of peptides identified per protein (spectral counting). Gene ontology and KEGG pathway analyses revealed the functions and locations of the identified proteins. The findings of both metaproteomics and 16S rRNA sequencing analyses are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Frederikke Christine Lindenberg ◽  
Ditte Olsen Lützhøft ◽  
Lukasz Krych ◽  
James Fielden ◽  
Witold Kot ◽  
...  

Some oligosaccharides induce growth of anti-inflammatory bacterial species and induce regulatory immunity in humans as well as animals. We have shown that the equine gut microbiota and the immune-microbial homeostasis largely stabilize within the first 50 days of life. Furthermore, we have previously established that certain bacterial species in the equine gut correlated with regulatory immunity. Accordingly, we hypothesized that an oligosaccharide rich diet fed to foals during the first 50 days would increase the abundance of bacterial species associated with regulatory immunity, and that this would influence immune responses in the foals. Eight pregnant mares and their foals were fed an oligosaccharide rich diet from 4 weeks before expected parturition until 49 days post-partum. Six mares and foals served as control. Fecal microbiota from mares and foals was characterized using 16S rRNA gene amplicon high throughput sequencing. On Day 49 the test foals had significantly higher abundances of Akkermansia spp. Blood sampled from the foals in the test group on Day 7, 28, and 49 showed non-significant increases in IgA, and decreases in IgG on Day 49. In BALB/cBomTac mice inoculated with gut microbiota from test and control foals we found increased species richness, increased relative abundance of several species identified as potentially anti-inflammatory in horses, which were unclassified Clostridiales, Ruminococcaceae, Ruminococcus, Oscilospira, and Coprococcus. We also found increased il10 expression in the ileum if inoculated with test foal microbiota. We conclude that an oligosaccharide diet fed to foals in the “window of opportunity,” the first 50 days of life, increases the abundance of anti-inflammatory species in the microbiota with potentially anti-inflammatory effects on regulatory immunity.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12562
Author(s):  
Zhiyuan Lu ◽  
Sisi Li ◽  
Hongxia Li ◽  
Zhucheng Wang ◽  
Derong Meng ◽  
...  

Background The composition of the intestinal microbiota plays a significant role in modulating host health. It serves as a sensitive evaluation indicator and has substantial implications in protecting endangered species. Great Bustards are typical farmland-dependent wintering birds that are highly susceptible to the interference of human activities. However, information regarding their gut microbiota remains scarce. Methods To ensure a comprehensive analysis of this crucial data, we collected fecal samples from wild Great Bustards at their wintering habitat for two consecutive years. High-throughput sequencing of the 16S rRNA gene was subsequently applied to characterize their core gut microbiota and determine whether the gut microbial composition was similar or varied interannually. Results The gut microbiota of the Great Bustard was primarily comprised of four phyla: Firmicutes (82.87%), Bacteroidetes (7.98%), Proteobacteria (4.49%), and Actinobacteria (3.67%), accounting for 99.01% of the microbial community in all samples. Further analysis revealed 22 genera of core microbes and several pathogens. Notably, there were no significant differences in the alpha-diversity and beta-diversity between the two sample groups from different years. Conclusions This study provides essential information for assessing the health and developing targeted protective measures of this threatened species.


2020 ◽  
Author(s):  
Daxing Gu ◽  
Shanshan Zhou ◽  
Lili Yao ◽  
Ying Tan ◽  
Xingzi Chi ◽  
...  

Abstract Background: Recent studies have suggested that Shenling Baizhu San (SLBZS), an complementary and alternative medical therapy for ulcerative colitis (UC), alleviate clinic symptoms by the improvement of biochemical criteria and restoration of the intestinal barrier function. SLBZS as a famous Chinese herbal formula has been reportedly used to treat UC, of which mechanism is unknown. This study investigated the therapeutic effects of SLBZS on restoring the gut microbiota in a UC rat model. Methods: We proposed a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced UC rat model to monitor the structural modulation of the gut microbiota. The test period was 10 days (observation for two days after modeling, treatment for 8 days by SLBZS). In this study, the level of inflammatory cytokines and activity of antioxidant enzymes in serum were ascertained by enzyme-linked immunosorbent assay (ELISA) and histological changes of colon were observed. Feces were collected for high-throughput sequencing of 16S rRNA gene. Results: SLBZS partly reduced the diversity of the gut microbiota, while the abundance of that is increased. Furthermore, at the genus level, the relative abundance of short chain fatty acids (SCFA) producing bacteria including Prevotella and Oscillospira increased, while the relative abundance of harmful bacteria including Desulfovibrio, and Bilophila decreased. Additionally, SLBZS could improve the lesions of colon and significantly reduce the expression of Interleukin-6 (IL-6) and Myeloperoxidase (MPO) and increase the activities of Superoxide dismutase (SOD) and Catalase (CAT) in rats serum. Conclusions: These results demonstrate that SLBZS may treat UC effectively by inhibiting inflammation, enhancing antioxidant capacity and regulating gut microbiota.


2014 ◽  
Vol 68 (5) ◽  
pp. 657-662 ◽  
Author(s):  
Xinfeng Liu ◽  
Hanlu Fan ◽  
Xiangbin Ding ◽  
Zhongshan Hong ◽  
Yongwei Nei ◽  
...  

Animals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 89 ◽  
Author(s):  
Alejandro Villasante ◽  
Carolina Ramírez ◽  
Natalia Catalán ◽  
Rafael Opazo ◽  
Patricio Dantagnan ◽  
...  

Atlantic salmon (Salmo salar) is a carnivorous fish species whose productive performance tends to be suboptimal when fed low-cost carbohydrate rich meals. It is of interest to study the dynamics of gut microbiota communities in salmonids fed high carbohydrate diets since gut microbes are referred to as key players that influence the metabolism and physiology of the host. A study was conducted to determine the effect of feeding a high carbohydrate diet to Atlantic salmon in gut microbiota communities. A medium carbohydrate (15% wheat starch)/medium protein (MC/MP) diet or a high carbohydrate (30% wheat starch)/low protein (HC/LP) diet was fed to triplicate tanks (28 fish each) during four weeks. We conducted an in-depth characterization of the distal intestine digesta microbiota using high-throughput sequencing of the V4 region of the 16S rRNA gene. Firmicutes, Actinobacteria and Proteobacteria were the major phyla determined in either experimental group. Phylum Planctomycetes, class Planctomycetia, order Planctomycetales and genus Lactococcus were significantly more abundant in fish fed the HC/LP diet compared with fish fed the MC/MP diet. Our study suggests feeding a carbohydrate rich meal to salmon exerts a low impact on the structure of gut microbial communities, affecting mostly low-abundance bacteria capable of metabolizing anaerobically carbohydrates as a major energy-yielding substrate.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lei Zhou ◽  
Xiaona Huo ◽  
Boyu Liu ◽  
Hui Wu ◽  
Jiang Feng

The gut microflora play a very important role in the life of animals. Although an increasing number of studies have investigated the gut microbiota of birds in recent years, there is a lack of research work on the gut microbiota of wild birds, especially carnivorous raptors, which are thought to be pathogen vectors. There are also a lack of studies focused on the dynamics of the gut microbiota during development in raptors. In this study, 16S rRNA gene amplicon high-throughput sequencing was used to analyze the gut microbiota community composition of a medium-sized raptor, the Eurasian Kestrel (Falco tinnunculus), and to reveal stage-specific signatures in the gut microbiota of nestlings during the pre-fledging period. Moreover, differences in the gut microbiota between adults and nestlings in the same habitat were explored. The results indicated that the Eurasian Kestrel hosts a diverse assemblage of gut microbiota. Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were the primary phyla shared within the guts of adults and chicks. However, adults harbored higher abundances of Proteobacteria while nestlings exhibited higher abundances of Firmicutes and Actinobacteria, and consequently the majority of dominant genera observed in chicks differed from those in adults. Although no significant differences in diversity were observed across the age groups during nestling ontogeny, chicks from all growth stages harbored richer and more diverse bacterial communities than adults. In contrast, the differences in gut microbial communities between adults and younger nestlings were more pronounced. The gut microbes of the nestlings in the last growth stage were converged with those of the adults. This study provides basic reference data for investigations of the gut microbiota community structure of wild birds and deepens our understanding of the dynamics of the gut microflora during raptor development.


2020 ◽  
Vol 9 (10) ◽  
Author(s):  
Wilbert Serrano ◽  
Raul M. Olaechea ◽  
Ulrike I. Tarazona

Despite the importance of the Peruvian scallop Argopecten purpuratus as a major cultivated species, information on its microbiota is limited. Here, we provide a high-throughput sequencing data analysis of 16S rRNA gene amplicons from the distal intestine of A. purpuratus. Geographical and seasonal variation of the indigenous gut microbiota is shown.


2021 ◽  
Vol 9 (8) ◽  
pp. 1770 ◽  
Author(s):  
Qianfu Liu ◽  
Zini Lai ◽  
Yuan Gao ◽  
Chao Wang ◽  
Yanyi Zeng ◽  
...  

The vital role of the gut microbiota in fish growth, development, immunity, and health has been largely confirmed. However, the interaction between environmental microbiota and the gut microbiota of aquaculture species remains unclear. Therefore, we analyzed the gut microbiota of largemouth bass (Micropterus salmoides) collected from subtropical ponds in southern China, as well as the pond water and aquatic sediment microbiota, using high-throughput sequencing of the 16S rRNA gene. Our results demonstrated significant differences in the compositions of pond water, sediment, and the gut microbiota of largemouth bass. Moreover, these compositions changed throughout the culture period. Only approximately 1% of the bacterial species in the pond sediment and gut microbiota were exchanged. However, the bacterial proportion of the gut microbiota from pond water microbiota was approximately 7% in samples collected in June and August, which increased markedly to 73% in October. Similarly, the proportion of bacteria in the pond water microbiota from the gut microbiota was approximately 12% in June and August, which increased to 45% in October. The study findings provide basic information for understanding the interactions between environmental microbiota and the gut microbiota of cultured fish, which may contribute to improved pond culture practices for largemouth bass.


Sign in / Sign up

Export Citation Format

Share Document