scholarly journals The Crossroads of Glycoscience, Infection, and Immunology

2021 ◽  
Vol 12 ◽  
Author(s):  
Tanya R. McKitrick ◽  
Margaret E. Ackerman ◽  
Robert M. Anthony ◽  
Clay S. Bennett ◽  
Michael Demetriou ◽  
...  

Advances in experimental capabilities in the glycosciences offer expanding opportunities for discovery in the broad areas of immunology and microbiology. These two disciplines overlap when microbial infection stimulates host immune responses and glycan structures are central in the processes that occur during all such encounters. Microbial glycans mediate host-pathogen interactions by acting as surface receptors or ligands, functioning as virulence factors, impeding host immune responses, or playing other roles in the struggle between host and microbe. In the context of the host, glycosylation drives cell–cell interactions that initiate and regulate the host response and modulates the effects of antibodies and soluble immune mediators. This perspective reports on a workshop organized jointly by the National Institute of Allergy and Infectious Diseases and the National Institute of Dental and Craniofacial Research in May 2020. The conference addressed the use of emerging glycoscience tools and resources to advance investigation of glycans and their roles in microbe-host interactions, immune-mediated diseases, and immune cell recognition and function. Future discoveries in these areas will increase fundamental scientific understanding and have the potential to improve diagnosis and treatment of infections and immune dysregulation.

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 231-232
Author(s):  
A. Najm ◽  
A. Alunno ◽  
X. Mariette ◽  
B. Terrier ◽  
G. De Marco ◽  
...  

Background:The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a global health problem. Beside the specific pathogenic effect of SARS-CoV-2, incompletely understood deleterious and aberrant host immune responses play critical roles in severe disease. Rheumatologists have the best experience of studying and treating these complicated hyperinflammatory processes.Objectives:To summarize the available information on pathophysiology of COVID-19.Methods:As part of a EULAR taskforce, two systematic literature reviews were performed one on pathophysiology and one on immunomodulatory therapies. Two reviewers independently identified eligible studies according to the following PICO framework: P (population): patients with SARS-CoV-2 infection; I (intervention): any intervention/no intervention; C (comparator): any comparator; O (outcome) any clinical or serological outcome including but not limited to immune cell phenotype and function and serum cytokine concentration. The results pertaining to pathophysiology of COVID-19 are presented here.Results:Of the 55496 records yielded, 85 articles were eligible for inclusion. Included studies were at variable risk of bias and exploring various aspects of disease pathogenesis from immune to non-immune cells (Table 1). Pro-inflammatory cytokines’ expression including IL-6, was increased, especially in severe COVID-19, although not as high as other states with severe systemic inflammation. Innate and adaptative immune cell compartments were differentially affected by SARS-CoV-2 infection: neutrophils displayed an immature differentiation state and also increased neutrophil extracellular traps (NETs) formation. Dendritic cell number was reduced and classical monocytes was increased although displaying a reduced expression of HLA-DR. The lymphoid compartment was also affected: lymphopenia was present with a reduced number of CD4+ and CD8+ T lymphocytes and more frequent PD1+CD8+ T cells corresponding to an exhausted phenotype. Antibody response to SARS-CoV-2 infection showed a high variability across individuals and disease spectrum. Multiparametric algorithms showed variable diagnostic performances in predicting survival, hospitalization, disease progression or severity, and mortality. Differences in SARS-CoV-2 manifestations in adults and children were highlighted.Conclusion:Overall, SARS-CoV-2 infection affects both innate and adaptative immune responses in a variable way, according to both disease severity and individual parameters. This SLR informs the EULAR points to consider on pathophysiology and use of immunomodulatory therapies in COVID-19.Table 1.Studies on SARS-CoV-2 infection pathogenesisResearch questionNCytokines profile7Immune profile18Algorithm17Children3Comorbidities1Endothelial dysfunction and platelets8Gut and microbiota3Genetics and variants8Histology7Antibodies profiles8Viral load and immune response4Interferon3Immunosenecsnce3Total90**Some manuscripts were including in several research questions. Total number of studies included n=85.Disclosure of Interests:Aurelie Najm Speakers bureau: BMS, Consultant of: BMS, Alessia Alunno: None declared, Xavier Mariette Speakers bureau: BMS, Eli Lilly, Galapagos, Gilead, GSK, Janssen, Novartis, Pfizer, Servier and UCB, Consultant of: BMS, Eli Lilly, Galapagos, Gilead, GSK, Janssen, Novartis, Pfizer, Servier and UCB, Benjamin Terrier Speakers bureau: Roche, Chugai, Vifor Pharma, GSK, AstraZeneca, Terumo BCT, LFB and Grifols, Consultant of: Roche, Chugai, Vifor Pharma, GSK, AstraZeneca, Terumo BCT, LFB and Grifols, Gabriele De Marco: None declared, Laura Mason: None declared, Jenny Emmel: None declared, Dennis McGonagle Speakers bureau: Abbvie, BMS, Celgene, Eli Lilly, Janssen, MSD, Novartis, Pfizer, Roche and UCB, Consultant of: Abbvie, BMS, Celgene, Eli Lilly, Janssen, MSD, Novartis, Pfizer, Roche and UCB, Pedro M Machado Speakers bureau: Abbvie, BMS, Celgene, Eli Lilly, Janssen, MSD, Novartis, Orphazyme, Pfizer, Roche and UCB, Consultant of: Abbvie, BMS, Celgene, Eli Lilly, Janssen, MSD, Novartis, Orphazyme, Pfizer, Roche and UCB.


RMD Open ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. e001549 ◽  
Author(s):  
Aurélie Najm ◽  
Alessia Alunno ◽  
Xavier Mariette ◽  
Benjamin Terrier ◽  
Gabriele De Marco ◽  
...  

BackgroundThe SARS-CoV-2 pandemic is a global health problem. Beside the specific pathogenic effect of SARS-CoV-2, incompletely understood deleterious and aberrant host immune responses play critical roles in severe disease. Our objective was to summarise the available information on the pathophysiology of COVID-19.MethodsTwo reviewers independently identified eligible studies according to the following PICO framework: P (population): patients with SARS-CoV-2 infection; I (intervention): any intervention/no intervention; C (comparator): any comparator; O (outcome) any clinical or serological outcome including but not limited to immune cell phenotype and function and serum cytokine concentration.ResultsOf the 55 496 records yielded, 84 articles were eligible for inclusion according to question-specific research criteria. Proinflammatory cytokine expression, including interleukin-6 (IL-6), was increased, especially in severe COVID-19, although not as high as other states with severe systemic inflammation. The myeloid and lymphoid compartments were differentially affected by SARS-CoV-2 infection depending on disease phenotype. Failure to maintain high interferon (IFN) levels was characteristic of severe forms of COVID-19 and could be related to loss-of-function mutations in the IFN pathway and/or the presence of anti-IFN antibodies. Antibody response to SARS-CoV-2 infection showed a high variability across individuals and disease spectrum. Multiparametric algorithms showed variable diagnostic performances in predicting survival, hospitalisation, disease progression or severity, and mortality.ConclusionsSARS-CoV-2 infection affects both humoral and cellular immunity depending on both disease severity and individual parameters. This systematic literature review informed the EULAR ‘points to consider’ on COVID-19 pathophysiology and immunomodulatory therapies.


2022 ◽  
Vol 23 (1) ◽  
pp. 525
Author(s):  
Tarina Sharma ◽  
Anwar Alam ◽  
Aquib Ehtram ◽  
Anshu Rani ◽  
Sonam Grover ◽  
...  

Mycobacterium tuberculosis (M.tb) is a successful pathogen that can reside within the alveolar macrophages of the host and can survive in a latent stage. The pathogen has evolved and developed multiple strategies to resist the host immune responses. M.tb escapes from host macrophage through evasion or subversion of immune effector functions. M.tb genome codes for PE/PPE/PE_PGRS proteins, which are intrinsically disordered, redundant and antigenic in nature. These proteins perform multiple functions that intensify the virulence competence of M.tb majorly by modulating immune responses, thereby affecting immune mediated clearance of the pathogen. The highly repetitive, redundant and antigenic nature of PE/PPE/PE_PGRS proteins provide a critical edge over other M.tb proteins in terms of imparting a higher level of virulence and also as a decoy molecule that masks the effect of effector molecules, thereby modulating immuno-surveillance. An understanding of how these proteins subvert the host immunological machinery may add to the current knowledge about M.tb virulence and pathogenesis. This can help in redirecting our strategies for tackling M.tb infections.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Alessandra Siracusano ◽  
Antonella Teggi ◽  
Elena Ortona

Cystic echinococcosis (CE) is a widespread chronic endemic helminthic disease caused by infection with metacestodes of the tapewormEchinococcus granulosus. CE affects humans and has a worldwide prevalence of approximately six million. In this review, we discuss current findings in diagnosis and clinical management of CE and new concepts relating toE. granulosusmolecules that directly modulate the host immune responses favouring a strong anti-inflammatory response and perpetuating parasite survival in the host. New insights into the molecular biology ofE. granulosuswill improve considerably our knowledge of the disease and will provide new potential therapeutic applications to treat or prevent inflammatory immune-mediated disease.


2020 ◽  
Vol 6 (1) ◽  
pp. 10 ◽  
Author(s):  
Riccardo Guidi ◽  
Christopher J. Wedeles ◽  
Mark S. Wilson

Immunological diseases, including asthma, autoimmunity and immunodeficiencies, affect a growing percentage of the population with significant unmet medical needs. As we slowly untangle and better appreciate these complex genetic and environment-influenced diseases, new therapeutically targetable pathways are emerging. Non-coding RNA species, which regulate epigenetic, transcriptional and translational responses are critical regulators of immune cell development, differentiation and effector function, and may represent one such new class of therapeutic targets. In this review we focus on type-2 immune responses, orchestrated by TH2 cell-derived cytokines, IL-4, IL-5 and IL-13, which stimulate a variety of immune and tissue responses- commonly referred to as type-2 immunity. Evolved to protect us from parasitic helminths, type-2 immune responses are observed in individuals with allergic diseases, including Asthma, atopic dermatitis and food allergy. A growing number of studies have identified the involvement of various RNA species, including microRNAs (miRNA) and long non-coding (lncRNA), in type-2 immune responses and in both clinical and pre-clinical disease settings. We highlight these recent findings, identify gaps in our understanding and provide a perspective on how our current understanding can be harnessed for novel treat opportunities to treat type-2 immune-mediated diseases.


2020 ◽  
Vol 8 (12) ◽  
pp. 1882
Author(s):  
Sigri Kløve ◽  
Claudia Genger ◽  
Dennis Weschka ◽  
Soraya Mousavi ◽  
Stefan Bereswill ◽  
...  

Human Campylobacter infections are emerging worldwide and constitute significant health burdens. We recently showed that the immunopathological sequelae in Campylobacter jejuni-infected mice were due to Toll-like receptor (TLR)-4 dependent immune responses induced by bacterial lipooligosaccharide (LOS). Information regarding the molecular mechanisms underlying Campylobacter coli-host interactions are scarce, however. Therefore, we analyzed C. coli-induced campylobacteriosis in secondary abiotic IL-10−/− mice with and without TLR4. Mice were infected perorally with a human C. coli isolate or with a murine commensal Escherichia coli as apathogenic, non-invasive control. Independent from TLR4, C. coli and E. coli stably colonized the gastrointestinal tract, but only C. coli induced clinical signs of campylobacteriosis. TLR4−/− IL-10−/− mice, however, displayed less frequently fecal blood and less distinct histopathological and apoptotic sequelae in the colon versus IL-10−/− counterparts on day 28 following C. coli infection. Furthermore, C. coli-induced colonic immune cell responses were less pronounced in TLR4−/− IL-10−/− as compared to IL-10−/− mice and accompanied by lower pro-inflammatory mediator concentrations in the intestines and the liver of the former versus the latter. In conclusion, our study provides evidence that TLR4 is involved in mediating C. coli-LOS-induced immune responses in intestinal and extra-intestinal compartments during murine campylobacteriosis.


2006 ◽  
Vol 85 (12) ◽  
pp. 1061-1073 ◽  
Author(s):  
A. Jewett ◽  
C. Head ◽  
N.A. Cacalano

Mounting effective anti-tumor immune responses against tumors by both the innate and adaptive immune effectors is important for the clearance of tumors. However, accumulated evidence indicates that immune responses that should otherwise suppress or eliminate transformed cells are themselves suppressed by the function of tumor cells in a variety of cancer patients, including those with oral cancers. Signaling abnormalities, spontaneous apoptosis, and reduced proliferation and function of circulating natural killer cells (NK), T-cells, dendritic cells (DC), and tumor-infiltrating lymphocytes (TILs) have been documented previously in oral cancer patients. Several mechanisms have been proposed for the functional deficiencies of tumor-associated immune cells in oral cancer patients. Both soluble factors and contact-mediated immunosuppression by the tumor cells have been implicated in the inhibition of immune cell function and the progression of tumors. More recently, elevated levels and function of key transcription factors in tumor cells, particularly NFκB and STAT3, have been shown to mediate immune suppression in the tumor microenvironment. This review will focus on these emerging mechanisms of immunosuppression in oral cancers.


2018 ◽  
Vol 62 (2) ◽  
pp. 135-147 ◽  
Author(s):  
Michael J. Cipriano ◽  
Stephen L. Hajduk

Extracellular vesicles (EVs) are produced by invading pathogens and also by host cells in response to infection. The origin, composition, and function of EVs made during infection are diverse and provide effective vehicles for localized and broad dissimilation of effector molecules in the infected host. Extracellular pathogens use EVs to communicate with each other by sensing the host environment contributing to social motility, tissue tropism, and persistence of infection. Pathogen-derived EVs can also interact with host cells to influence the adhesive properties of host membranes and to alter immune recognition and response. Intracellular pathogens can affect both the protein and RNA content of EVs produced by infected host cells. Release of pathogen-induced host EVs can affect host immune responses to infection. In this review, we will describe both the biogenesis and content of EVs produced by a number of diverse pathogens. In addition, we will examine the pathogen-induced changes to EVs produced by infected host cells.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5651
Author(s):  
Eleftheria Papaioannou ◽  
María del Pilar González-Molina ◽  
Ana M. Prieto-Muñoz ◽  
Laura Gámez-Reche ◽  
Alicia González-Martín

Cancer immunology research has mainly focused on the role of protein-coding genes in regulating immune responses to tumors. However, despite more than 70% of the human genome is transcribed, less than 2% encodes proteins. Many non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have been identified as critical regulators of immune cell development and function, suggesting that they might play important roles in orchestrating immune responses against tumors. In this review, we summarize the scientific advances on the role of ncRNAs in regulating adaptive tumor immunity, and discuss their potential therapeutic value in the context of cancer immunotherapy.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Inga Wessels ◽  
Henrike Josephine Fischer ◽  
Lothar Rink

Evidence for the importance of zinc for all immune cells and for mounting an efficient and balanced immune response to various environmental stressors has been accumulating in recent years. This article describes the role of zinc in fundamental biological processes and summarizes our current knowledge of zinc's effect on hematopoiesis, including differentiation into immune cell subtypes. In addition, the important role of zinc during activation and function of immune cells is detailed and associated with the specific immune responses to bacteria, parasites, and viruses. The association of zinc with autoimmune reactions and cancers as diseases with increased or decreased immune responses is also discussed. This article provides a broad overview of the manifold roles that zinc, or its deficiency, plays in physiology and during various diseases. Consequently, we discuss why zinc supplementation should be considered, especially for people at risk of deficiency. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document