scholarly journals Reduced Feeding Frequency Improves Feed Efficiency Associated With Altered Fecal Microbiota and Bile Acid Composition in Pigs

2021 ◽  
Vol 12 ◽  
Author(s):  
Honglin Yan ◽  
Wenzhuo Wei ◽  
Luga Hu ◽  
Yong Zhang ◽  
Hongfu Zhang ◽  
...  

A biphasic feeding regimen exerts an improvement effect on feed efficiency of pigs. While gut microbiome and metabolome are known to affect the host phenotype, so far the effects of reduced feeding frequency on fecal microbiota and their metabolism in pigs remain unclear. Here, the combination of 16S rRNA sequencing technique as well as untargeted and targeted metabolome analyses was adopted to investigate the fecal microbiome and metabolome of growing–finishing pigs in response to a biphasic feeding [two meals per day (M2)] pattern. Sixty crossbred barrows were randomly assigned into two groups with 10 replicates (three pigs/pen), namely, the free-access feeding group (FA) and the M2 group. Pigs in the FA group were fed free access while those in the M2 group were fed ad libitum twice daily for 1 h at 8:00 and 18:00. Results showed that pigs fed biphasically exhibited increased feed efficiency compared to FA pigs. The Shannon and Simpson indexes were significantly increased by reducing the feeding frequency. In the biphasic-fed pigs, the relative abundances of Subdoligranulum, Roseburia, Mitsuokella, and Terrisporobacter were significantly increased while the relative abundances of unidentified_Spirochaetaceae, Methanobrevibacter, unidentified_Bacteroidales, Alloprevotella, Parabacteroides, and Bacteroides were significantly decreased compared to FA pigs. Partial least-square discriminant analysis (PLS-DA) analysis revealed an obvious variation between the FA and M2 groups; the differential features were mainly involved in arginine, proline, glycine, serine, threonine, and tryptophan metabolism as well as primary bile acid (BA) biosynthesis. In addition, the changes in the microbial genera were correlated with the differential fecal metabolites. A biphasic feeding regimen significantly increased the abundances of primary BAs and secondary BAs in feces of pigs, and the differentially enriched BAs were positively correlated with some specific genera. Taken together, these results suggest that the improvement effect of a reduced feeding frequency on feed efficiency of pigs might be associated with the altered fecal microbial composition and fecal metabolite profile in particular the enlarged stool BA pool.

2021 ◽  
Vol 8 ◽  
Author(s):  
Hongyu Wang ◽  
Pengke Xia ◽  
Zhiyang Lu ◽  
Yong Su ◽  
Weiyun Zhu

Time-restricted feeding (TRF) mode is a potential strategy in improving the health and production of farm animals. However, the effect of TRF on microbiota and their metabolism in the large intestine of the host remains unclear. Therefore, the present study aimed to investigate the responses of microbiome and metabolome induced by TRF based on a growing-pig model. Twelve crossbred growing barrows were randomly allotted into two groups with six replicates (1 pig/pen), namely, the free-access feeding group (FA) and TRF group. Pigs in the FA group were fed free access while the TRF group were fed free access within a regular time three times per day at 07:00–08:00, 12:00–13:00, and 18:00–19:00, respectively. Results showed that the concentrations of NH4-N, putrescine, cadaverine, spermidine, spermine, total biogenic amines, isobutyrate, butyrate, isovalerate, total SCFA, and lactate were increased while the pH value in the colonic digesta and the concentration of acetate was decreased in the TRF group. The Shannon index was significantly increased in the TRF group; however, no significant effects were found in the Fisher index, Simpson index, ACE index, Chao1 index, and observed species between the two groups. In the TRF group, the relative abundances of Prevotella 1 and Eubacterium ruminantium group were significantly increased while the relative abundances of Clostridium sensu sticto 1, Lactobacillus, and Eubacterium coprostanoligenes group were decreased compared with the FA group. PLS-DA analysis revealed an obvious and regular variation between the FA and TRF groups, further pathway enrichment analysis showed that these differential features were mainly enriched in pyrimidine metabolism, nicotinate and nicotinamide metabolism, glycerolipid metabolism, and fructose and mannose metabolism. In addition, Pearson's correlation analysis indicated that the changes in the microbial genera were correlated with the colonic metabolites. In conclusion, these results together indicated that although the overall microbial composition in the colon was not changed, TRF induced the gradient changes of the nutrients and metabolites which were correlated with certain microbial genera including Lactobacillus, Eubacterium_ruminantium group, Eubacterium coprostanoligenes group, Prevotella 1, and Clostridium sensu sticto 1. However, more studies are needed to understand the impacts of TRF on the health and metabolism of growing pigs.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 477-477
Author(s):  
Mathilde Le Sciellour ◽  
Sébastien Dejean ◽  
David Renaudeau ◽  
Olivier Zemb

Abstract The present study aimed at predicting feed efficiency (FE) based on fecal microbiota, using partial least square regression (PLSR), sparse PLSR, and random forest regression (RF). Fecal samples from 147 Pietrain x (Large White x Landrace) pigs reared in two consecutive batches were collected at 99 days of age. Daily live body weight and feed intake were individually measured in pigs fed ad libitum with a corn soybean diet. The relative abundances of operational taxonomic units (OTU) resulting from fecal 16S rRNA sequencing were used to build the prediction models of FE between 99 and 113 days. From these data, neither PLSR nor RF models have been validated on external datasets. An important over-fitting has been observed in PLSR. With this aim to test the ability of the methods to retrieve information, synthetic OTU were created to fit an artificial Pearson correlation with FE (r² = 0 to 0.9) and were added among the predictors in the dataset. Artificial OTU correlated above 0.37 with FE improved the prediction in sparse PLSR and RF, and reduced the over-fitting. The best predictions were achieved by sparse PLSR. The present study emphasized the ability of sparse PLSR and RF to build valid prediction models of a quantitative phenotype, based on fecal microbiota composition. Since no OTU was correlated above 0.30 with FE in the real dataset, the power of the prediction methods was not enough to extract useful information from the fecal microbiota. The functional redundancy of the microbiota could explain the lack of relevant information in the real dataset to predict pigs’ quantitative phenotype. These results suggest that the best strategy is to run sparse PLSR only if a correlation higher than 0.37 is observed. This study is part of the Feed-a-Gene Project funded from the European Union’s H2020 Program (grant 633531).


2019 ◽  
Vol 85 (22) ◽  
Author(s):  
Ursula M. McCormack ◽  
Tânia Curião ◽  
Barbara U. Metzler-Zebeli ◽  
Toby Wilkinson ◽  
Henry Reyer ◽  
...  

ABSTRACT As previous studies have demonstrated a link between the porcine intestinal microbiome and feed efficiency (FE), microbiota manipulation may offer a means of improving FE in pigs. A fecal microbiota transplantation procedure (FMTp), using fecal extracts from highly feed-efficient pigs, was performed in pregnant sows (n = 11), with a control group (n = 11) receiving no FMTp. At weaning, offspring were allocated, within sow treatment, to (i) control (n = 67; no dietary supplement) or (ii) inulin (n = 65; 6-week dietary inulin supplementation) treatments. The sow FMTp, alone or in combination with inulin supplementation in offspring, reduced offspring body weight by 8.1 to 10.6 kg at ∼140 days of age, but there was no effect on feed intake. It resulted in better FE, greater bacterial diversity, and higher relative abundances of potentially beneficial bacterial taxa (Fibrobacter and Prevotella) in offspring. Due to the FMTp and/or inulin supplementation, relative abundances of potential pathogens (Chlamydia and Treponema) in the ileum and cecal concentrations of butyric acid were significantly lower. The maternal FMTp led to a greater number of jejunal goblet cells in offspring. Inulin supplementation alone did not affect growth or FE but upregulated duodenal genes linked to glucose and volatile fatty acid homeostasis and increased the mean platelet volume but reduced ileal propionic acid concentrations, granulocyte counts, and serum urea concentrations. Overall, the FMTp in pregnant sows, with or without dietary inulin supplementation in offspring, beneficially modulated offspring intestinal microbiota (albeit mostly low-relative-abundance taxa) and associated physiological parameters. Although FE was improved, the detrimental effect on growth limits the application of this FMTp-inulin strategy in commercial pig production. IMPORTANCE As previous research suggests a link between microbiota and FE, modulation of the intestinal microbiome may be effective in improving FE in pigs. The FMTp in gestating sows, alone or in combination with postweaning dietary inulin supplementation in offspring, achieved improvements in FE and resulted in a higher relative abundance of intestinal bacteria associated with fiber degradation and a lower relative abundance of potential pathogens. However, there was a detrimental effect on growth, although this may not be wholly attributable to microbiota transplantation, as antibiotic and other interventions were also part of the FMT regimen. Therefore, further work with additional control groups is needed to disentangle the effects of each component of the FMTp in order to develop a regimen with practical applications in pig production. Additional research based on findings from this study may also identify specific dietary supplements for the promotion/maintenance of the microbiota transferred via the maternal FMTp, thereby optimizing pig growth and FE.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lena Öhman ◽  
Anders Lasson ◽  
Anna Strömbeck ◽  
Stefan Isaksson ◽  
Marcus Hesselmar ◽  
...  

AbstractPatients with ulcerative colitis (UC) have an altered gut microbiota composition, but the microbial relationship to disease activity needs to be further elucidated. Therefore, temporal dynamics of the fecal microbial community during remission and flare was determined. Fecal samples were collected at 2–6 time-points from UC patients during established disease (cohort EST) and at diagnosis (cohort NEW). Sampling range for cohort EST was 3–10 months and for cohort NEW 36 months. Relapses were monitored for an additional three years for cohort EST. Microbial composition was assessed by Genetic Analysis GA-map Dysbiosis Test, targeting ≥ 300 bacteria. Eighteen patients in cohort EST (8 with maintained remission and 10 experiencing a flare), provided 71 fecal samples. In cohort NEW, 13 patients provided 49 fecal samples. The microbial composition showed no clustering related to disease activity in any cohort. Microbial dissimilarity was higher between than within patients for both cohorts, irrespective of presence of a flare. Microbial stability within patients was constant over time with no major shift in overall composition nor modification in the abundance of any specific species. Microbial composition was not affected by intensified medical treatment or linked to future disease course. Thus in UC, the gut microbiota is highly stable irrespective of disease stage, disease activity or treatment escalation. This suggests that prolonged dietary interventions or repeated fecal transplantations are needed to be able to induce permanent alterations of the gut microbiota.


mBio ◽  
2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Christopher Staley ◽  
Colleen R. Kelly ◽  
Lawrence J. Brandt ◽  
Alexander Khoruts ◽  
Michael J. Sadowsky

ABSTRACT Bacterial communities from subjects treated for recurrent Clostridium difficile infection (rCDI) by fecal microbiota transplantation (FMT), using either heterologous donor stool samples or autologous stool samples, were characterized by Illumina next-generation sequencing. As previously reported, the success of heterologous FMT (90%) was superior to that of autologous FMT (43%) ( P = 0.019), and post-FMT intestinal bacterial communities differed significantly between treatment arms ( P < 0.001). Subjects cured by autologous FMT typically had greater abundances of the Clostridium XIVa clade and Holdemania bacteria prior to treatment, and the relative abundances of these groups increased significantly after FMT compared to heterologous FMT and pre-FMT samples. The typical shift to post-FMT, donor-like assemblages, featuring high relative abundances of genera within the Bacteroidetes and Firmicutes phyla, was not observed in the autologous FMT subjects. Autologous FMT patient bacterial communities were significantly different in composition than those for heterologous FMT patients and donors ( P < 0.001). The SourceTracker program, which employs a Bayesian algorithm to determine source contributions to sink communities, showed that patients initially treated by heterologous FMT had significantly higher percentages of engraftment (i.e., similarity to donor communities, mean value of 74%) compared to those who suffered recurrence following autologous FMT (1%) ( P ≤ 0.013). The findings of this study suggest that complete donor engraftment may be not necessary if functionally critical taxa are present in subjects following antibiotic therapy. IMPORTANCE This study provides a detailed characterization of fecal bacterial communities in subjects who participated in a previously published randomized clinical trial to treat recurrent C. difficile infection (rCDI). Bacterial communities were characterized to determine differences between subjects who received fecal bacteria either from healthy donor stool samples or their own stool samples as “placebo” in order to determine which groups of bacteria were most important in achieving a cure. The results of this study suggested that bacteria associated with secondary bile acid metabolism could potentially provide resistance to infection and that complete transfer of healthy donor microorganisms was not necessary to resolve CDI following unsuccessful antibiotic treatment.


1959 ◽  
Vol 196 (5) ◽  
pp. 965-968 ◽  
Author(s):  
Clarence Cohn ◽  
Dorothy Joseph

Normal young adult male rats were either force-fed or allowed to eat ad libitum a moderate carbohydrate diet for 3–4 weeks. The force-fed animals were given either the amount of diet consumed by the animals eating ad libitum (pair-fed) or 80% of this amount (underfed). After a 2-week period of observation, we found that the rats eating ad libitum gained 65 gm of body weight, the pair-fed, force-fed 62 gm and the underfed, force-fed 40 gm. On the basis of the water, fat and protein content of the skin, viscera and carcass of control animals killed at the beginning of the feeding regimen and of similar constituents of the experimental animals after 2 weeks of feeding, the composition of the newly formed tissues of the various groups of animals consisted of the following: a) the rat with free access to food—water = 67.8%, fat = 7.8% and protein = 22.4%; b) the pair-fed, force-fed animal—water = 55.5%, fat = 23.6% and protein = 17.7%; c) the underfed, force-fed animal—water = 64.4%, fat = 7.9% and protein = 20.0%. The ratio of calories retained in newly formed tissue to the calories ingested over the 2-week period was 11.9% for the animals eating ad libitum, 20.6% for the pair-fed, force-fed animals and 9.5% for the underfed, force-fed rats. Force feeding appears to change intermediary metabolic pathways in the direction of increased ‘efficiency’ with resultant greater fat deposition.


Author(s):  
Ang Li ◽  
Tiantian Li ◽  
Xinxin Gao ◽  
Hang Yan ◽  
Jingfeng Chen ◽  
...  

Thyroid nodules are found in nearly half of the adult population. Accumulating evidence suggests that the gut microbiota plays an important role in thyroid metabolism, yet the association between gut microbiota capacity, thyroid nodules, and thyroid function has not been studied comprehensively. We performed a gut microbiome genome-wide association study in 196 patients with thyroid nodules and 283 controls by using whole-genome shotgun sequencing. We found that participants with high-grade thyroid nodules have decreased number of gut microbial species and gene families compared with those with lower grade nodules and controls. There are also significant alterations in the overall microbial composition in participants with high-grade thyroid nodules. The gut microbiome in participants with high-grade thyroid nodules is characterized by greater amino acid degradation and lower butyrate production. The relative abundances of multiple butyrate producing microbes are reduced in patients with high-grade thyroid nodules and the relative abundances of L-histidine metabolism pathways are associated with thyrotropin-releasing hormone. Our study describes the gut microbiome characteristics in thyroid nodules and a gut-thyroid link and highlight specific gut microbiota as a potential therapeutic target to regulate thyroid metabolism.


2021 ◽  
Author(s):  
Robert S. Thompson ◽  
Michelle K Gaffney ◽  
Shelby Hopkins ◽  
Tel Kelley ◽  
Antonio Gonzalez ◽  
...  

Chronic disruption of rhythms (CDR) impacts sleep and can result in circadian misalignment of physiological systems, which in turn is associated with increased disease risk. Exposure to repeated or severe stressors also disturbs sleep and diurnal rhythms. Prebiotic nutrients produce favorable changes in gut microbial ecology, the gut metabolome, and reduce several negative impacts of acute severe stressor exposure, including disturbed sleep, core body temperature rhythmicity, and gut microbial dysbiosis. This study tested the hypothesis whether prebiotics can also reduce the negative impacts of CDR by facilitating light/dark realignment of sleep/wake, core body temperature, and locomotor activity; and whether prebiotic-induced changes in bacteria and bile acid profiles are associated with these effects. Male, Sprague Dawley rats were fed diets enriched in prebiotic substrates or calorically matched control chow. After 5 weeks on diet, rats were exposed to CDR (12h light/dark reversal, weekly for 8 weeks) or remained on undisturbed normal light/dark cycles (NLD). Sleep EEG, core body temperature, and locomotor activity were recorded via biotelemetry in freely moving rats. Fecal samples were collected on experimental days -33, 0 (day of onset of CDR), and 42. Taxonomic identification and relative abundances of gut microbes were measured in fecal samples using 16S rRNA gene sequencing and shotgun metagenomics. Fecal primary, bacterially-modified secondary, and conjugated bile acids were measured using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Prebiotic diet produced rapid and stable increases in the relative abundances of Parabacteroides distasonis and Ruminiclostridium 5. Shotgun metagenomics analyses confirmed reliable increases in relative abundances of Parabacteroides distasonis and Clostridium leptum, a member of the Ruminiclostridium genus. Prebiotic diet also modified fecal bile acid profiles; and based on correlational and step-wise regression analyses, Parabacteroides distasonis and Ruminiclostridium 5 were positively associated with each other and negatively associated with secondary and conjugated bile acids. Prebiotic diet, but not CDR, impacted beta diversity. Measures of alpha diversity evenness were decreased by CDR and prebiotic diet prevented that effect. Rats exposed to CDR while eating prebiotic, compared to control diet, more quickly realigned NREM sleep and core body temperature (ClockLab) diurnal rhythms to the altered light/dark cycle. Finally, both cholic acid and Ruminiclostridium 5 prior to CDR were associated with time to realign CBT rhythms to the new light/dark cycle after CDR; whereas both Ruminiclostridium 5 and taurocholic acid prior to CDR were associated with NREM sleep recovery after CDR. These results suggest that ingestion of prebiotic substrates is an effective strategy to increase the relative abundance of health promoting microbes, alter the fecal bile acid profile, and facilitate the recovery and realignment of sleep and diurnal rhythms after circadian disruption.


2018 ◽  
Vol 2 (S1) ◽  
pp. 12-13
Author(s):  
Andrea Shin ◽  
David Nelson ◽  
John Wo ◽  
Michael Camilleri ◽  
Toyia James-Stevenson ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Objectives and goals of this study will be to: (1) compare fecal microbiota and fecal organic acids in irritable bowel syndrome (IBS) patients and controls and (2) investigate the association between colonic transit and fecal microbiota in IBS patients and controls. METHODS/STUDY POPULATION: We propose an investigation of fecal organic acids, colonic transit and fecal microbiota in 36 IBS patients and 18 healthy controls. The target population will be adults ages 18–65 years meeting Rome IV criteria for IBS (both diarrhea- and constipation-predominant, IBS-D and IBS-C) and asymptomatic controls. Exclusion criteria are: (a) history of microscopic colitis, inflammatory bowel disease, celiac disease, visceral cancer, chronic infectious disease, immunodeficiency, uncontrolled thyroid disease, liver disease, or elevated AST/ALT>2.0× the upper limit of normal, (b) prior radiation therapy of the abdomen or abdominal surgeries with the exception of appendectomy or cholecystectomy >6 months before study initiation, (c) ingestion of prescription, over the counter, or herbal medications affecting gastrointestinal transit or study interpretation within 6 months of study initiation for controls or within 2 days before study initiation for IBS patients, (d) pregnant females, (e) antibiotic usage within 3 months before study participation, (f) prebiotic or probiotic usage within the 2 weeks before study initiation, (g) tobacco users. Primary outcomes will be fecal bile acid excretion and profile, short-chain fatty acid excretion and profile, colonic transit, and fecal microbiota. Secondary outcomes will be stool characteristics based on responses to validated bowel diaries. Stool samples will be collected from participants during the last 2 days of a 4-day 100 g fat diet and split into 3 samples for fecal microbiota, SCFA, and bile acid analysis and frozen. Frozen aliquots will be shipped to the Metabolite Profiling Facility at Purdue University and the Mayo Clinic Department of Laboratory Medicine and Pathology for SCFA and bile acid measurements, respectively. Analysis of fecal microbiota will be performed in the research laboratory of Dr David Nelson in collaboration with bioinformatics expertise affiliated with the Nelson lab. Colonic transit time will be measured with the previously validated method using radio-opaque markers. Generalized linear models will be used as the analysis framework for comparing study endpoints among groups. RESULTS/ANTICIPATED RESULTS: This study seeks to examine the innovative concept that specific microbial signatures are associated with increased fecal excretion of organic acids to provide unique insights on a potential mechanistic link between altered intraluminal organic acids and fecal microbiota. DISCUSSION/SIGNIFICANCE OF IMPACT: Results may lead to development of targets for novel therapies and diagnostic biomarkers for IBS, emphasizing the role of the fecal metabolome.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Vyacheslav A. Petrov ◽  
María A. Fernández-Peralbo ◽  
Rico Derks ◽  
Elena M. Knyazeva ◽  
Nikolay V. Merzlikin ◽  
...  

Background. A functional interplay between BAs and microbial composition in gut is a well-documented phenomenon. In bile, this phenomenon is far less studied, and with this report, we describe the interactions between the BAs and microbiota in this complex biological matrix. Methodology. Thirty-seven gallstone disease patients of which twenty-one with Opisthorchis felineus infection were enrolled in the study. The bile samples were obtained during laparoscopic cholecystectomy for gallstone disease operative treatment. Common bile acid composition was measured by LC-MS/MS. Gallbladder microbiota were previously analyzed with 16S rRNA gene sequencing on Illumina MiSeq platform. The associations between bile acid composition and microbiota were analyzed. Results. Bile acid signature and Opisthorchis felineus infection status exert influence on beta-diversity of bile microbial community. Direct correlations were found between taurocholic acid, taurochenodeoxycholic acid concentrations, and alpha-diversity of bile microbiota. Taurocholic acid and taurochenodeoxycholic acid both show positive associations with the presence of Chitinophagaceae family, Microbacterium and Lutibacterium genera, and Prevotella intermedia. Also, direct associations were identified for taurocholic acid concentration and the presence of Actinomycetales and Bacteroidales orders, Lautropia genus, Jeotgalicoccus psychrophilus, and Haemophilus parainfluenzae as well as for taurochenodeoxycholic acid and Acetobacteraceae family and Sphingomonas genus. There were no differences in bile acid concentrations between O. felineus-infected and noninfected patients. Conclusions/Significance. Associations between diversity, taxonomic profile of bile microbiota, and bile acid levels were evidenced in patients with cholelithiasis. Increase of taurochenodeoxycholic acid and taurocholic acid concentration correlates with bile microbiota alpha-diversity and appearance of opportunistic pathogens.


Sign in / Sign up

Export Citation Format

Share Document