scholarly journals Discrete Dynamics of Dynamic Neural Fields

2021 ◽  
Vol 15 ◽  
Author(s):  
Eddy Kwessi

Large and small cortexes of the brain are known to contain vast amounts of neurons that interact with one another. They thus form a continuum of active neural networks whose dynamics are yet to be fully understood. One way to model these activities is to use dynamic neural fields which are mathematical models that approximately describe the behavior of these congregations of neurons. These models have been used in neuroinformatics, neuroscience, robotics, and network analysis to understand not only brain functions or brain diseases, but also learning and brain plasticity. In their theoretical forms, they are given as ordinary or partial differential equations with or without diffusion. Many of their mathematical properties are still under-studied. In this paper, we propose to analyze discrete versions dynamic neural fields based on nearly exact discretization schemes techniques. In particular, we will discuss conditions for the stability of nontrivial solutions of these models, based on various types of kernels and corresponding parameters. Monte Carlo simulations are given for illustration.

2020 ◽  
Vol 31 (6) ◽  
pp. 681-689
Author(s):  
Jalal Mirakhorli ◽  
Hamidreza Amindavar ◽  
Mojgan Mirakhorli

AbstractFunctional magnetic resonance imaging a neuroimaging technique which is used in brain disorders and dysfunction studies, has been improved in recent years by mapping the topology of the brain connections, named connectopic mapping. Based on the fact that healthy and unhealthy brain regions and functions differ slightly, studying the complex topology of the functional and structural networks in the human brain is too complicated considering the growth of evaluation measures. One of the applications of irregular graph deep learning is to analyze the human cognitive functions related to the gene expression and related distributed spatial patterns. Since a variety of brain solutions can be dynamically held in the neuronal networks of the brain with different activity patterns and functional connectivity, both node-centric and graph-centric tasks are involved in this application. In this study, we used an individual generative model and high order graph analysis for the region of interest recognition areas of the brain with abnormal connection during performing certain tasks and resting-state or decompose irregular observations. Accordingly, a high order framework of Variational Graph Autoencoder with a Gaussian distributer was proposed in the paper to analyze the functional data in brain imaging studies in which Generative Adversarial Network is employed for optimizing the latent space in the process of learning strong non-rigid graphs among large scale data. Furthermore, the possible modes of correlations were distinguished in abnormal brain connections. Our goal was to find the degree of correlation between the affected regions and their simultaneous occurrence over time. We can take advantage of this to diagnose brain diseases or show the ability of the nervous system to modify brain topology at all angles and brain plasticity according to input stimuli. In this study, we particularly focused on Alzheimer’s disease.


2017 ◽  
Vol 28 (7) ◽  
pp. 693-703 ◽  
Author(s):  
Lina Sun ◽  
Qingshan Sun ◽  
Jinshun Qi

AbstractDepression is a prevalent devastating mental disorder that affects the normal life of patients and brings a heavy burden to whole society. Although many efforts have been made to attenuate depressive/anxiety symptoms, the current clinic antidepressants have limited effects. Scientists have long been making attempts to find some new strategies that can be applied as the alternative antidepressant therapy. Exercise, a widely recognized healthy lifestyle, has been suggested as a therapy that can relieve psychiatric stress. However, how exercise improves the brain functions and reaches the antidepressant target needs systematic summarization due to the complexity and heterogeneous feature of depression. Brain plasticity, especially adult neurogenesis in the hippocampus, is an important neurophysiology to facilitate animals for neurogenesis can occur in not only humans. Many studies indicated that an appropriate level of exercise can promote neurogenesis in the adult brains. In this article, we provide information about the antidepressant effects of exercise and its implications in adult neurogenesis. From the neurogenesis perspective, we summarize evidence about the effects of exercise in enhancing neurogenesis in the hippocampus through regulating growth factors, neurotrophins, neurotransmitters and metabolism as well as inflammations. Taken together, a large number of published works indicate the multiple benefits of exercise in the brain functions of animals, particularly brain plasticity like neurogenesis and synaptogenesis. Therefore, a new treatment method for depression therapy can be developed by regulating the exercise activity.


2020 ◽  
Vol 18 (1) ◽  
pp. 1-14
Author(s):  
Bożydar L.J. Kaczmarek

The main aim of the paper is to show that many previously forgotten discoveries within the field of neuroscience own their rediscovery and renaissance to the refinement of tools provided by the technological advances. Most spectacular is the advancement of brain imaging techniques, which provide hard data that support for evidence for previously neglected presumptions and ideas. Neuroplasticity is an example of such a long ignored historical discovery. One reason for that neglect is that it stood in contradiction to beliefs and theories prevailing at the first half of the twenties century. The idea of neuronal plasticity is not disputed any longer since it has found confirmation not only in a dramatic development of neuroimaging but also in the advancement of neurobiology. Most authors concentrate upon neuronal plasticity, recent studies, however, have produced a wealth of information regarding neurogenesis, in which astrocytes have proved to play a significant role. The significance of adult neurogenesis for learning and memory and for treatment of depression is outlined. Moreover, it was observed that neuroplasticity benefits patients suffering from obsessive-compulsive disorder (OCD) who undergo effective, evidence-based treatment. Convincing examples of brain plasticity brings also clinical practice, which often unveils the appearance of hitherto hidden artistic abilities in people who have suffered from brain damage. In addition, the possibilities of altering the brain functions by mental force alone are discussed. Thus, the paper reveals that many “controversial” ideas were confirmed by contemporary studies forcing changes in a traditional view on brain works.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7605
Author(s):  
Michał Lech ◽  
Andrzej Czyżewski ◽  
Michał T. Kucewicz

The emergence of innovative neurotechnologies in global brain projects has accelerated research and clinical applications of BCIs beyond sensory and motor functions. Both invasive and noninvasive sensors are developed to interface with cognitive functions engaged in thinking, communication, or remembering. The detection of eye movements by a camera offers a particularly attractive external sensor for computer interfaces to monitor, assess, and control these higher brain functions without acquiring signals from the brain. Features of gaze position and pupil dilation can be effectively used to track our attention in healthy mental processes, to enable interaction in disorders of consciousness, or to even predict memory performance in various brain diseases. In this perspective article, we propose the term ‘CyberEye’ to encompass emerging cognitive applications of eye-tracking interfaces for neuroscience research, clinical practice, and the biomedical industry. As CyberEye technologies continue to develop, we expect BCIs to become less dependent on brain activities, to be less invasive, and to thus be more applicable.


2018 ◽  
Vol 38 (6) ◽  
pp. 935-949 ◽  
Author(s):  
Christine Marie ◽  
Martin Pedard ◽  
Aurore Quirié ◽  
Anne Tessier ◽  
Philippe Garnier ◽  
...  

Low cerebral levels of brain-derived neurotrophic factor (BDNF), which plays a critical role in many brain functions, have been implicated in neurodegenerative, neurological and psychiatric diseases. Thus, increasing BDNF levels in the brain is considered an attractive possibility for the prevention/treatment of various brain diseases. To date, BDNF-based therapies have largely focused on neurons. However, given the cross-talk between endothelial cells and neurons and recent evidence that BDNF expressed by the cerebral endothelium largely accounts for BDNF levels present in the brain, it is likely that BDNF-based therapies would be most effective if they also targeted the cerebral endothelium. In this review, we summarize the available knowledge about the biology and actions of BDNF derived from endothelial cells of the cerebral microvasculature and we emphasize the remaining gaps and shortcomings.


Author(s):  
Z. A. Akbarkhodjaeva ◽  
G. S. Rakhimbaeva

In this article authors discussed about the influence of volume of the ischemic origin on clinical outcomes in patients with stroke. Cerebral ischemic stroke is one of the main cause of death among cardiovascular and brain diseases. The study is dedicated to learn the relationship of the dynamics of the volume of the ischemic focus with clinical outcome of stroke. For this study, 125 patients were examined and analyzed. MRI of the brain in acute period of ischemic stroke in 78% of patients were assessed that foci of ischemia of small (less than 10 cm3), medium (10-50 cm3) and large size (more than 50 cm3). Lacunarstrokes, as well as the size of the penumbra, affecting the ability to restore impaired brain functions, can be identified only by magnetic resonance imaging of the brain.


2019 ◽  
Vol 20 (3) ◽  
pp. 737 ◽  
Author(s):  
Takeo Yoshikawa ◽  
Tadaho Nakamura ◽  
Kazuhiko Yanai

Brain histamine is a neurotransmitter and regulates diverse physiological functions. Previous studies have shown the involvement of histamine depletion in several neurological disorders, indicating the importance of drug development targeting the brain histamine system. Histamine N-methyltransferase (HNMT) is a histamine-metabolising enzyme expressed in the brain. Although pharmacological studies using HNMT inhibitors have been conducted to reveal the direct involvement of HNMT in brain functions, HNMT inhibitors with high specificity and sufficient blood–brain barrier permeability have not been available until now. Recently, we have phenotyped Hnmt-deficient mice to elucidate the importance of HNMT in the central nervous system. Hnmt disruption resulted in a robust increase in brain histamine concentration, demonstrating the essential role of HNMT in the brain histamine system. Clinical studies have suggested that single nucleotide polymorphisms of the human HNMT gene are associated with several brain disorders such as Parkinson’s disease and attention deficit hyperactivity disorder. Postmortem studies also have indicated that HNMT expression is altered in human brain diseases. These findings emphasise that an increase in brain histamine levels by novel HNMT inhibitors could contribute to the improvement of brain disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nora Cassam Sulliman ◽  
Batoul Ghaddar ◽  
Laura Gence ◽  
Jessica Patche ◽  
Sepand Rastegar ◽  
...  

AbstractHigh density lipoproteins (HDLs) display pleiotropic functions such as anti-inflammatory, antioxidant, anti-protease, and anti-apoptotic properties. These effects are mediated by four main receptors: SCARB1 (SR-BI), ABCA1, ABCG1, and CD36. Recently, HDLs have emerged for their potential involvement in brain functions, considering their epidemiological links with cognition, depression, and brain plasticity. However, their role in the brain is not well understood. Given that the zebrafish is a well-recognized model for studying brain plasticity, metabolic disorders, and apolipoproteins, it could represent a good model for investigating the role of HDLs in brain homeostasis. By analyzing RNA sequencing data sets and performing in situ hybridization, we demonstrated the wide expression of scarb1, abca1a, abca1b, abcg1, and cd36 in the brain of adult zebrafish. Scarb1 gene expression was detected in neural stem cells (NSCs), suggesting a possible role of HDLs in NSC activity. Accordingly, intracerebroventricular injection of HDLs leads to their uptake by NSCs without modulating their proliferation. Next, we studied the biodistribution of HDLs in the zebrafish body. In homeostatic conditions, intraperitoneal injection of HDLs led to their accumulation in the liver, kidneys, and cerebral endothelial cells in zebrafish, similar to that observed in mice. After telencephalic injury, HDLs were diffused within the damaged parenchyma and were taken up by ventricular cells, including NSCs. However, they failed to modulate the recruitment of microglia cells at the injury site and the injury-induced proliferation of NSCs. In conclusion, our results clearly show a functional HDL uptake process involving several receptors that may impact brain homeostasis and suggest the use of HDLs as delivery vectors to target NSCs for drug delivery to boost their neurogenic activity.


1970 ◽  
Vol 6 (1) ◽  
Author(s):  
Muskinul Fuad

The education system in Indonesia emphasize on academic intelligence, whichincludes only two or three aspects, more than on the other aspects of intelligence. For thatreason, many children who are not good at academic intelligence, but have good potentials inother aspects of intelligence, do not develop optimally. They are often considered and labeledas "stupid children" by the existing system. This phenomenon is on the contrary to the theoryof multiple intelligences proposed by Howard Gardner, who argues that intelligence is theability to solve various problems in life and produce products or services that are useful invarious aspects of life.Human intelligence is a combination of various general and specific abilities. Thistheory is different from the concept of IQ (intelligence quotient) that involves only languageskills, mathematical, and spatial logics. According to Gardner, there are nine aspects ofintelligence and its potential indicators to be developed by each child born without a braindefect. What Gardner suggested can be considered as a starting point to a perspective thatevery child has a unique individual intelligence. Parents have to treat and educate theirchildren proportionally and equitably. This treatment will lead to a pattern of education that isfriendly to the brain and to the plurality of children’s potential.More than the above points, the notion that multiple intelligences do not just comefrom the brain needs to be followed. Humans actually have different immaterial (spiritual)aspects that do not refer to brain functions. The belief in spiritual aspects and its potentialsmeans that human beings have various capacities and they differ from physical capacities.This is what needs to be addressed from the perspective of education today. The philosophyand perspective on education of the educators, education stakeholders, and especially parents,are the first major issue to be addressed. With this step, every educational activity andcommunication within the family is expected to develop every aspect of children'sintelligence, especially the spiritual intelligence.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1311
Author(s):  
Faraz Ahmad ◽  
Ping Liu

Lead (Pb) neurotoxicity is a major concern, particularly in children. Developmental exposure to Pb can alter neurodevelopmental trajectory and has permanent neuropathological consequences, including an increased vulnerability to further stressors. Ascorbic acid is among most researched antioxidant nutrients and has a special role in maintaining redox homeostasis in physiological and physio-pathological brain states. Furthermore, because of its capacity to chelate metal ions, ascorbic acid may particularly serve as a potent therapeutic agent in Pb poisoning. The present review first discusses the major consequences of Pb exposure in children and then proceeds to present evidence from human and animal studies for ascorbic acid as an efficient ameliorative supplemental nutrient in Pb poisoning, with a particular focus on developmental Pb neurotoxicity. In doing so, it is hoped that there is a revitalization for further research on understanding the brain functions of this essential, safe, and readily available vitamin in physiological states, as well to justify and establish it as an effective neuroprotective and modulatory factor in the pathologies of the nervous system, including developmental neuropathologies.


Sign in / Sign up

Export Citation Format

Share Document