scholarly journals Valproic Acid Enhanced Temozolomide-Induced Anticancer Activity in Human Glioma Through the p53–PUMA Apoptosis Pathway

2021 ◽  
Vol 11 ◽  
Author(s):  
Hong-Chieh Tsai ◽  
Kuo-Chen Wei ◽  
Pin-Yuan Chen ◽  
Chiung-Yin Huang ◽  
Ko-Ting Chen ◽  
...  

Glioblastoma (GBM), the most lethal type of brain tumor in adults, has considerable cellular heterogeneity. The standard adjuvant chemotherapeutic agent for GBM, temozolomide (TMZ), has a modest response rate due to the development of drug resistance. Multiple studies have shown that valproic acid (VPA) can enhance GBM tumor control and prolong survival when given in conjunction with TMZ. However, the beneficial effect is variable. In this study, we analyzed the impact of VPA on GBM patient survival and its possible correlation with TMZ treatment and p53 gene mutation. In addition, the molecular mechanisms of TMZ in combination with VPA were examined using both p53 wild-type and p53 mutant human GBM cell lines. Our analysis of clinical data indicates that the survival benefit of a combined TMZ and VPA treatment in GBM patients is dependent on their p53 gene status. In cellular experiments, our results show that VPA enhanced the antineoplastic effect of TMZ by enhancing p53 activation and promoting the expression of its downstream pro-apoptotic protein, PUMA. Our study indicates that GBM patients with wild-type p53 may benefit from a combined TMZ+VPA treatment.

Author(s):  
Congcong Cao ◽  
Qian Ma ◽  
Shaomei Mo ◽  
Ge Shu ◽  
Qunlong Liu ◽  
...  

Androgen receptor (AR) signaling is essential for maintaining spermatogenesis and male fertility. However, the molecular mechanisms by which AR acts between male germ cells and somatic cells during spermatogenesis have not begun to be revealed until recently. With the advances obtained from the use of transgenic mice lacking AR in Sertoli cells (SCARKO) and single-cell transcriptomic sequencing (scRNA-seq), the cell specific targets of AR action as well as the genes and signaling pathways that are regulated by AR are being identified. In this study, we collected scRNA-seq data from wild-type (WT) and SCARKO mice testes at p20 and identified four somatic cell populations and two male germ cell populations. Further analysis identified that the distribution of Sertoli cells was completely different and uncovered the cellular heterogeneity and transcriptional changes between WT and SCARKO Sertoli cells. In addition, several differentially expressed genes (DEGs) in SCARKO Sertoli cells, many of which have been previously implicated in cell cycle, apoptosis and male infertility, have also been identified. Together, our research explores a novel perspective on the changes in the transcription level of various cell types between WT and SCARKO mice testes, providing new insights for the investigations of the molecular and cellular processes regulated by AR signaling in Sertoli cells.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1187
Author(s):  
Marisol Fernández-Ortiz ◽  
Ramy K. A. Sayed ◽  
José Fernández-Martínez ◽  
Antonia Cionfrini ◽  
Paula Aranda-Martínez ◽  
...  

Aging is a major risk for cardiovascular diseases (CVD). Age-related disorders include oxidative stress, mitochondria dysfunction, and exacerbation of the NF-κB/NLRP3 innate immune response pathways. Some of the molecular mechanisms underlying these processes, however, remain unclear. This study tested the hypothesis that NLRP3 inflammasome plays a role in cardiac aging and melatonin is able to counteract its effects. With the aim of investigating the impact of NLRP3 inflammasome and the actions and target of melatonin in aged myocardium, we analyzed the expression of proteins implied in mitochondria dynamics, autophagy, apoptosis, Nrf2-dependent antioxidant response and mitochondria ultrastructure in heart of wild-type and NLRP3-knockout mice of 3, 12, and 24 months-old, with and without melatonin treatment. Our results showed that the absence of NLRP3 prevented age-related mitochondrial dynamic alterations in cardiac muscle with minimal effects in cardiac autophagy during aging. The deficiency of the inflammasome affected Bax/Bcl2 ratio, but not p53 or caspase 9. The Nrf2-antioxidant pathway was also unaffected by the absence of NLRP3. Furthermore, NLRP3-deficiency prevented the drop in autophagy and mice showed less mitochondrial damage than wild-type animals. Interestingly, melatonin treatment recovered mitochondrial dynamics altered by aging and had few effects on cardiac autophagy. Melatonin supplementation also had an anti-apoptotic action in addition to restoring Nrf2-antioxidant capacity and improving mitochondria ultrastructure altered by aging.


2017 ◽  
Vol 114 (35) ◽  
pp. 9421-9426 ◽  
Author(s):  
Rachel Larder ◽  
M. F. Michelle Sim ◽  
Pawan Gulati ◽  
Robin Antrobus ◽  
Y. C. Loraine Tung ◽  
...  

An intergenic region of human chromosome 2 (2p25.3) harbors genetic variants which are among those most strongly and reproducibly associated with obesity. The gene closest to these variants is TMEM18, although the molecular mechanisms mediating these effects remain entirely unknown. Tmem18 expression in the murine hypothalamic paraventricular nucleus (PVN) was altered by changes in nutritional state. Germline loss of Tmem18 in mice resulted in increased body weight, which was exacerbated by high fat diet and driven by increased food intake. Selective overexpression of Tmem18 in the PVN of wild-type mice reduced food intake and also increased energy expenditure. We provide evidence that TMEM18 has four, not three, transmembrane domains and that it physically interacts with key components of the nuclear pore complex. Our data support the hypothesis that TMEM18 itself, acting within the central nervous system, is a plausible mediator of the impact of adjacent genetic variation on human adiposity.


2021 ◽  
Vol 23 (1) ◽  
pp. 297
Author(s):  
Qiong Wu ◽  
Anders E. Berglund ◽  
Robert J. MacAulay ◽  
Arnold B. Etame

Stemness reprogramming remains a largely unaddressed principal cause of lethality in glioblastoma (GBM). It is therefore of utmost importance to identify and target mechanisms that are essential for GBM stemness and self-renewal. Previously, we implicated BIRC3 as an essential mediator of therapeutic resistance and survival adaptation in GBM. In this study, we present novel evidence that BIRC3 has an essential noncanonical role in GBM self-renewal and stemness reprogramming. We demonstrate that BIRC3 drives stemness reprogramming of human GBM cell lines, mouse GBM cell lines and patient-derived GBM stem cells (GSCs) through regulation of BMP4 signaling axis. Specifically, BIRC3 induces stemness reprogramming in GBM through downstream inactivation of BMP4 signaling. RNA-Seq interrogation of the stemness reprogramming hypoxic (pseudopalisading necrosis and perinecrosis) niche in GBM patient tissues further validated the high BIRC3/low BMP4 expression correlation. BIRC3 knockout upregulated BMP4 expression and prevented stemness reprogramming of GBM models. Furthermore, siRNA silencing of BMP4 restored stemness reprogramming of BIRC3 knockout in GBM models. In vivo silencing of BIRC3 suppressed tumor initiation and progression in GBM orthotopic intracranial xenografts. The stemness reprograming of both GSCs and non-GSCs populations highlights the impact of BIRC3 on intra-tumoral cellular heterogeneity GBM. Our study has identified a novel function of BIRC3 that can be targeted to reverse stemness programming of GBM.


2017 ◽  
Vol 126 (3) ◽  
pp. 726-734 ◽  
Author(s):  
Zhiyuan Xu ◽  
Cheng-Chia Lee ◽  
Arjun Ramesh ◽  
Adam C. Mueller ◽  
David Schlesinger ◽  
...  

OBJECTIVE Recent advancements in molecular biology have identified the BRAF mutation as a common mutation in melanoma. The wide use of BRAF kinase inhibitor (BRAFi) in patients with metastatic melanoma has been established. The objective of this study was to examine the impact of BRAF mutation status and use of BRAFi in conjunction with stereotactic radiosurgery (SRS). METHODS This was a single-center retrospective study. Patient's charts and electronic records were reviewed for date of diagnosis of primary malignancy, BRAF mutation status, chemotherapies used, date of the diagnosis of CNS metastases, date of SRS, survival, local tumor control after SRS, and adverse events. Patients were divided into 3 groups: Group A, those with mutant BRAF without BRAFi treatment (13 patients); Group B, those with mutant BRAF with BRAFi treatment (17 patients); and Group C, those with wild-type BRAF (35 patients). Within a cohort of 65 patients with the known BRAF mutation status and treated with SRS between 2010 and 2014, 436 individual brain metastases (BMs) were identified. Kaplan-Meier methodology was then used to compare survival based on each binary parameter. RESULTS Median survival times after the diagnosis of melanoma BM and after SRS were favorable in patients with a BRAF mutation and treated with SRS in conjunction with BRAFi (Group B) compared with the patients with wild-type BRAF (Group C, 23 vs 8 months and 13 vs 5 months, respectively; p < 0.01, log-rank test). SRS provided a local tumor control rate of 89.4% in the entire cohort of patients. Furthermore, the local control rate was improved in the patients treated with SRS in conjunction with BRAFi (Group B) compared with patients with wild-type (Group C) or with BRAF mutation but no BRAFi (Group A) as an adjunct treatment for BMs. CONCLUSIONS BRAF mutation status appears to play an important role as a potent prognostic factor in patients harboring melanoma BM. BRAFi in conjunction with SRS may benefit this group of patients in terms of BM survival and SRS with an acceptable safety profile.


2015 ◽  
Vol 223 (3) ◽  
pp. 173-180 ◽  
Author(s):  
Christina Leibrock ◽  
Michael Hierlmeier ◽  
Undine E. Lang ◽  
Florian Lang

Abstract. The present study explored the impact of Akt1 and Akt3 on behavior. Akt1 (akt1-/-) and Akt3 (akt3-/-) knockout mice were compared to wild type (wt) mice. The akt1-/- mice, akt3-/- mice, and wt mice were similar in most parameters of the open-field test. However, the distance traveled in the center area was slightly but significantly less in akt3-/- mice than in wt mice. In the light/dark transition test akt1-/- mice had significantly lower values than wt mice and akt3-/- mice for distance traveled, number of rearings, rearing time in the light area, as well as time spent and distance traveled in the entrance area. They were significantly different from akt3-/- mice in the distance traveled, visits, number of rearings, rearing time in the light area, as well as time spent, distance traveled, number of rearings, and rearing time in the entrance area. In the O-maze the time spent, and the visits to open arms, as well as the number of protected and unprotected headdips were significantly less in akt1-/- mice than in wt mice, whereas the time spent in closed arms was significantly more in akt1-/- mice than in wt mice. Protected and unprotected headdips were significantly less in akt3-/- mice than in wt mice. In closed area, akt3-/- mice traveled a significantly larger distance at larger average speed than akt1-/- mice. No differences were observed between akt1-/- mice, akt3-/- mice and wt-type mice in the time of floating during the forced swimming test. In conclusion, akt1-/- mice and less so akt3-/ mice display subtle changes in behavior.


2010 ◽  
Vol 37 (6) ◽  
pp. 654-661 ◽  
Author(s):  
Xin TIAN ◽  
Chen LI ◽  
Yu-Ying LI ◽  
Zhuan-Hua WANG

2019 ◽  
Vol 25 (40) ◽  
pp. 5503-5511 ◽  
Author(s):  
Abdulaziz Alhasaniah ◽  
Michael J. Sherratt ◽  
Catherine A. O'Neill

A competent epidermal barrier is crucial for terrestrial mammals. This barrier must keep in water and prevent entry of noxious stimuli. Most importantly, the epidermis must also be a barrier to ultraviolet radiation (UVR) from the sunlight. Currently, the effects of ultraviolet radiation on epidermal barrier function are poorly understood. However, studies in mice and more limited work in humans suggest that the epidermal barrier becomes more permeable, as measured by increased transepidermal water loss, in response UVR, at doses sufficiently high to induce erythema. The mechanisms may include disturbance in the organisation of lipids in the stratum corneum (the outermost layer of the epidermis) and reduction in tight junction function in the granular layer (the first living layer of the skin). By contrast, suberythemal doses of UVR appear to have positive effects on epidermal barrier function. Topical sunscreens have direct and indirect protective effects on the barrier through their ability to block UV and also due to their moisturising or occlusive effects, which trap water in the skin, respectively. Some topical agents such as specific botanical extracts have been shown to prevent the loss of water associated with high doses of UVR. In this review, we discuss the current literature and suggest that the biology of UVR-induced barrier dysfunction, and the use of topical products to protect the barrier, are areas worthy of further investigation.


2019 ◽  
Vol 25 (29) ◽  
pp. 3098-3111 ◽  
Author(s):  
Luca Liberale ◽  
Giovanni G. Camici

Background: The ongoing demographical shift is leading to an unprecedented aging of the population. As a consequence, the prevalence of age-related diseases, such as atherosclerosis and its thrombotic complications is set to increase in the near future. Endothelial dysfunction and vascular stiffening characterize arterial aging and set the stage for the development of cardiovascular diseases. Atherosclerotic plaques evolve over time, the extent to which these changes might affect their stability and predispose to sudden complications remains to be determined. Recent advances in imaging technology will allow for longitudinal prospective studies following the progression of plaque burden aimed at better characterizing changes over time associated with plaque stability or rupture. Oxidative stress and inflammation, firmly established driving forces of age-related CV dysfunction, also play an important role in atherosclerotic plaque destabilization and rupture. Several genes involved in lifespan determination are known regulator of redox cellular balance and pre-clinical evidence underlines their pathophysiological roles in age-related cardiovascular dysfunction and atherosclerosis. Objective: The aim of this narrative review is to examine the impact of aging on arterial function and atherosclerotic plaque development. Furthermore, we report how molecular mechanisms of vascular aging might regulate age-related plaque modifications and how this may help to identify novel therapeutic targets to attenuate the increased risk of CV disease in elderly people.


Author(s):  
Basem M. Abdallah ◽  
Hany M. Khattab

: The isolation and culture of murine bone marrow-derived mesenchymal stromal stem cells (mBMSCs) have attracted great interest in terms of the pre-clinical applications of stem cells in tissue engineering and regenerative medicine. In addition, culturing mBMSCs is important for studying the molecular mechanisms of bone remodelling using relevant transgenic mice. Several factors have created challenges in the isolation and high-yield expansion of homogenous mBMSCs; these factors include low frequencies of bone marrow-derived mesenchymal stromal stem cells (BMSCs) in bone marrow, variation among inbred mouse strains, contamination with haematopoietic progenitor cells (HPCs), the replicative senescence phenotype and cellular heterogeneity. In this review, we provide an overview of nearly all protocols used for isolating and culturing mBMSCs with the aim of clarifying the most important guidelines for culturing highly purified mBMSC populations retaining in vitro and in vivo differentiation potential.


Sign in / Sign up

Export Citation Format

Share Document