scholarly journals Atorvastatin Upregulates microRNA-186 and Inhibits the TLR4-Mediated MAPKs/NF-κB Pathway to Relieve Steroid-Induced Avascular Necrosis of the Femoral Head

2021 ◽  
Vol 12 ◽  
Author(s):  
Yusong Zhang ◽  
Limin Ma ◽  
Erhai Lu ◽  
Wenhua Huang

Steroid-induced avascular necrosis of the femoral head (SANFH) is caused by the death of active components of the femoral head owing to hormone overdoses. The use of lipid-lowering drugs to prevent SANFH in animals inspired us to identify the mechanisms involving Atorvastatin (Ato) in SANFH. However, it is still not well understood how and to what extent Ato affects SANFH. This study aimed to figure out the efficacy of Ato in SANFH and the underlying molecular mechanisms. After establishment of the SANFH model, histological evaluation, lipid metabolism, inflammatory cytokines, oxidative stress, apoptosis, and autophagy of the femoral head were evaluated. The differentially expressed microRNAs (miRs) after Ato treatment were screened out using microarray analysis. The downstream gene and pathway of miR-186 were predicted and their involvement in SANFH rats was analyzed. OB-6 cells were selected to simulate SANFH in vitro. Cell viability, cell damage, inflammation responses, apoptosis, and autophagy were assessed. Ato alleviated SANFH, inhibited apoptosis, and promoted autophagy. miR-186 was significantly upregulated after Ato treatment. miR-186 targeted TLR4 and inactivated the MAPKs/NF-κB pathway. Inhibition of miR-186 reversed the protection of Ato on SANFH rats, while inhibition of TLR4 restored the protective effect of Ato. Ato reduced apoptosis and promoted autophagy of OB-6 cells by upregulating miR-186 and inhibiting the TLR4/MAPKs/NF-κB pathway. In conclusion, Ato reduced apoptosis and promoted autophagy, thus alleviating SANFH via miR-186 and the TLR4-mediated MAPKs/NF-κB pathway.

Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1497
Author(s):  
Luz del Mar Rivas-Chacón ◽  
Sofía Martínez-Rodríguez ◽  
Raquel Madrid-García ◽  
Joaquín Yanes-Díaz ◽  
Juan Ignacio Riestra-Ayora ◽  
...  

Age-related hearing loss (ARHL) is an increasing and gradual sensorineural hearing dysfunction. Oxidative stress is an essential factor in developing ARHL; additionally, premature senescence of auditory cells induced by oxidative stress can produce hearing loss. Hydrogen peroxide (H2O2) represents a method commonly used to generate cellular senescence in vitro. The objective of the present paper is to study H2O2-induced senescence patterns in three auditory cell lines (House Ear Institute-Organ of Corti 1, HEI-OC1; organ of Corti, OC-k3, and stria vascularis, SV-k1 cells) to elucidate the intrinsic mechanisms responsible for ARHL. The auditory cells were exposed to H2O2 at different concentrations and times. The results obtained show different responses of the hearing cells concerning cell growth, β-galactosidase activity, morphological changes, mitochondrial activation, levels of oxidative stress, and other markers of cell damage (Forkhead box O3a, FoxO3a, and 8-oxoguanine, 8-oxoG). Comparison between the responses of these auditory cells to H2O2 is a helpful method to evaluate the molecular mechanisms responsible for these auditory cells’ senescence. Furthermore, this in vitro model could help develop anti-senescent therapeutic strategies for the treatment of AHRL.


2021 ◽  
Author(s):  
Yongchang Guo ◽  
Dapeng Zhang ◽  
Yuju Cao ◽  
Xiaoyan Feng ◽  
Caihong Shen ◽  
...  

Abstract Ethnopharmacological relevanceOsteonecrosis of the femoral head (ONFH) is still a challenge for orthopedists worldwide, which may lead to disability in patients without effective treatment. A newly developed formula of Chinese medicine, Danyu Gukang Pills (DGP), was recognized to be effective for ONFH. Nevertheless, its molecular mechanisms remain to be clarified. MethodsNetwork pharmacology was adopted to detect the mechanism of DGP on ONFH. The compounds of DGP were collected from the online databases, and active components were selected based on their OB and DL index. The potential proteins of DGP were acquired from TCMSP database, while the potential genes of ONFH were obtained from Gene Cards and Pubmed Gene databases. The function of Gene and potential pathways were researched by GO and KEGG pathway enrichment analysis. The compounds-targets and targets-pathways network were constructed in an R and Cytosacpe software. The mechanism was further investigated via molecular docking. Finally, in-vitro experiments were validated in the BMSCs. ResultsA total of 2305 compounds in DGP were gained, among which, 370 were selected as active components for which conforming to criteria. Combined the network analysis, molecular docking and in-vitro experiments, the results firstly demonstrated that the treatment effect of DGP on ONFH may be closely related to HIF-1α, VEGFA and HIF-1 signaling pathway. ConclusionThe current study firstly researched the molecular mechanism of DGP on ONFH based on network pharmacology. The results indicated that DGP may exert the effect on ONFH targeting on HIF-1α and VEGFA via HIF-1 signaling pathway.


2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lingyu Yang ◽  
Dehai Xian ◽  
Xia Xiong ◽  
Rui Lai ◽  
Jing Song ◽  
...  

Proanthocyanidins (PCs) are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerousin vitroandin vivostudies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, anti-inflammation, immunomodulation, DNA repair, and antitumor activity. Accumulation of prooxidants such as reactive oxygen species (ROS) exceeding cellular antioxidant capacity results in oxidative stress (OS), which can damage macromolecules (DNA, lipids, and proteins), organelles (membranes and mitochondria), and whole tissues. OS is implicated in the pathogenesis and exacerbation of many cardiovascular, neurodegenerative, dermatological, and metabolic diseases, both through direct molecular damage and secondary activation of stress-associated signaling pathways. PCs are promising natural agents to safely prevent acute damage and control chronic diseases at relatively low cost. In this review, we summarize the molecules and signaling pathways involved in OS and the corresponding therapeutic mechanisms of PCs.


2020 ◽  
Vol 175 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Nivedita Banerjee ◽  
Hui Wang ◽  
Gangduo Wang ◽  
M Firoze Khan

Abstract Trichloroethene (trichloroethylene, TCE) and one of its reactive metabolites dichloroacetyl chloride (DCAC) are associated with the induction of autoimmunity in MRL+/+ mice. Although oxidative stress plays a major role in TCE-/DCAC-mediated autoimmunity, the underlying molecular mechanisms still need to be delineated. Nuclear factor (erythroid-derived 2)-like2 (Nrf2) is an oxidative stress-responsive transcription factor that binds to antioxidant responsive element (ARE) and provides protection by regulating cytoprotective and antioxidant gene expression. However, the potential of Nrf2 in the regulation of TCE-/DCAC-mediated autoimmunity is not known. This study thus focused on establishing the role of Nrf2 and consequent inflammatory responses in TCE-/DCAC-mediated autoimmunity. To achieve this, we pretreated Kupffer cells (KCs) or T cells with/without tert-butylhydroquinone (tBHQ) followed by treatment with DCAC. In both KCs and T cells, DCAC treatment significantly downregulated Nrf2 and HO-1 expression along with induction of Keap-1 and caspase-3, NF-κB (p65), TNF-α, and iNOS, whereas pretreatment of these cells with tBHQ attenuated these responses. The in vitro findings were further verified in vivo by treating female MRL+/+ mice with TCE along with/without sulforaphane. TCE exposure in mice also led to reduction in Nrf2 and HO-1 but increased phospho-NF-κB (p-p65) and iNOS along with increased anti-dsDNA antibodies. Interestingly, sulforaphane treatment led to amelioration of TCE-mediated effects, resulting in Nrf2 activation and reduction in inflammatory and autoimmune responses. Our results show that TCE/DCAC mediates an impairment in Nrf2 regulation. Attenuation of TCE-mediated autoimmunity via activation of Nrf2 supports that antioxidants sulforaphane/tBHQ could be potential therapeutic agents for autoimmune diseases.


Author(s):  
Olga Verle ◽  
Oleg Ostrovskiy ◽  
Valerian Verovskiy ◽  
Galina Dudchenko

In the framework of the study, the degree of defragmentation of DNA by the DNA-comet method is evaluated when exposed to the cell culture of hydrogen peroxide (H2O2), and an in vitro model is developed to evaluate the antioxidant activity of new pharmacological agents. The results of working with cell lines show that the percentage of damage to the genetic material of cells of intact samples does not greatly vary from the method of removing the cellular monolayer from the culture plastic. Concerning the effect of H2O2 as an inducer of oxidative stress on DNA cell damage, the optimal level of DNA defragmentation has been modeled for subsequent studies of the protective action of antioxidants.


2017 ◽  
Author(s):  
Nicola J. Drummond ◽  
Nick O. Davies ◽  
Janet E. Lovett ◽  
Mark R. Miller ◽  
Graeme Cook ◽  
...  

AbstractExcessive reactive oxygen species (ROS) can damage proteins, lipids, and DNA, which result in cell damage and death. The outcomes can be acute, as seen in stroke, or more chronic as observed in age-related diseases such as Parkinson’s disease. Here we investigate the antioxidant ability of a novel synthetic flavonoid, Proxison (7-decyl-3-hydroxy-2-(3,4,5-trihydroxyphenyl)-4-chromenone), using a range of in vitro and in vivo approaches. We show that, while it has radical scavenging ability on par with other flavonoids in a cell-free system, Proxison is orders of magnitude more potent than natural flavonoids at protecting neural cells against oxidative stress and is capable of rescuing damaged cells. The unique combination of a lipophilic hydrocarbon tail with a modified polyphenolic head group promotes efficient cellular uptake and mitochondrial localisation of Proxison. Importantly, in vivo administration of Proxison demonstrated effective and well tolerated neuroprotection against oxidative stress in a zebrafish model of dopaminergic neuronal loss.


2020 ◽  
Vol 21 (8) ◽  
pp. 2735 ◽  
Author(s):  
Enaam Chleilat ◽  
Abhishek Pethe ◽  
Dietmar Pfeifer ◽  
Kerstin Krieglstein ◽  
Eleni Roussa

Calcium homeostasis is a cellular process required for proper cell function and survival, maintained by the coordinated action of several transporters, among them members of the Na+/Ca2+-exchanger family, such as SLC8A3. Transforming growth factor beta (TGF-β) signaling defines neuronal development and survival and may regulate the expression of channels and transporters. We investigated the regulation of SLC8A3 by TGF-β in a conditional knockout mouse with deletion of TGF-β signaling from Engrailed 1-expressing cells, i.e., in cells from the midbrain and rhombomere 1, and elucidated the underlying molecular mechanisms. The results show that SLC8A3 is significantly downregulated in developing dopaminergic and dorsal raphe serotonergic neurons in mutants and that low SLC8A3 abundance prevents the expression of the anti-apoptotic protein Bcl-xL. TGF-β signaling affects SLC8A3 via the canonical and p38 signaling pathway and may increase the binding of Smad4 to the Slc8a3 promoter. Expression of the lipid peroxidation marker malondialdehyde (MDA) was increased following knockdown of Slc8a3 expression in vitro. In neurons lacking TGF-β signaling, the number of MDA- and 4-hydroxynonenal (4-HNE)-positive cells was significantly increased, accompanied with increased cellular 4-HNE abundance. These results suggest that TGF-β contributes to the regulation of SLC8A3 expression in developing dopaminergic and dorsal raphe serotonergic neurons, thereby preventing oxidative stress.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 579 ◽  
Author(s):  
Maria A. Bonifacio ◽  
Giorgia Cerqueni ◽  
Stefania Cometa ◽  
Caterina Licini ◽  
Luigia Sabbatini ◽  
...  

Arbutin is a plant-derived glycosylated hydroquinone with antioxidant features, exploited to combat cell damage induced by oxidative stress. The latter hinders the osseointegration of bone prostheses, leading to implant failure. Little is known about arbutin antioxidant effects on human osteoblasts, therefore, this study explores the in vitro protective role of arbutin on osteoblast-like cells (Saos-2) and periosteum-derived progenitor cells (PDPCs). Interestingly, cells exposed to oxidative stress were protected by arbutin, which preserved cell viability and differentiation. Starting from these encouraging results, an antioxidant coating loaded with arbutin was electrosynthesized on titanium. Therefore, for the first time, a polyacrylate-based system was designed to release the effective concentration of arbutin in situ. The innovative coating was characterized from the physico-chemical and morphological point of view to achieve an optimized system, which was in vitro tested with cells. Morpho-functional evaluations highlighted the high viability and good compatibility of the arbutin-loaded coating, which also promoted the expression of PDPC differentiation markers, even under oxidative stress. These results agreed with the coatings’ in vitro antioxidant activity, which showed a powerful scavenging effect against DPPH radicals. Taken together, the obtained results open intriguing opportunities for the further development of natural bioactive coatings for orthopedic titanium implants.


2017 ◽  
Vol 7 (4) ◽  
pp. 20160113 ◽  
Author(s):  
Yuru Deng ◽  
Edlyn Li-Hui Lee ◽  
Ketpin Chong ◽  
Zakaria A. Almsherqi

The frequent appearance of non-lamellar membrane arrangements such as cubic membranes (CMs) in cells under stressed or pathological conditions points to an intrinsic cellular response mechanism. CM represents highly curved, three-dimensional nano-periodic structures that correspond to mathematically well-defined triply periodic minimal surfaces. Specifically, cellular membrane may transform into CM organization in response to pathological, inflammatory and oxidative stress conditions. CM organization, thus, may provide an advantage to cope with various types of stress. The identification of inducible membrane systems, such as in the mitochondrial inner membranes to cubic morphology upon starvation, opens new avenues for understanding the molecular mechanisms of cellular responses to oxidative stress. In this study, we compared the cellular responses of starved and fed amoeba Chaos carolinense to oxidative stress. Food deprivation from C. carolinense induces a significant increase in prooxidants such as superoxide and hydrogen peroxide. Surprisingly, we observed a significant lower rate of biomolecular damage in starved cells (with higher free radicals generation) when compared with fed cells. Specifically, lipid and RNA damages were significantly less in starved cells compared with fed cells. This observation was not due to the upregulation of intracellular antioxidants, as starved amoeba show reduced antioxidant enzymatic activities; however, it could be attributed to CM formation. CM could uptake and retain short segments of nucleic acids (resembles cellular RNA) in vivo and in vitro. Previous results showed that nucleic acids retained within CM sustain a minimal oxidative damage in vitro upon exposure to high level of superoxide. We thus propose that CM may act as a ‘protective’ shelter to minimize the oxidation of biologically essential macromolecules such as RNA. In summary, we examined enzymatic antioxidant activities as well as oxidative damage biomarkers in starved amoeba C. carolinense in correlation with the potential role of CM as an optimal intracellular membrane organization for the protection of biological macromolecules against oxidative damage.


Sign in / Sign up

Export Citation Format

Share Document