scholarly journals Psychoactive Effects of Lactobacillus johnsonii Against Restraint Stress-Induced Memory Dysfunction in Mice Through Modulating Intestinal Inflammation and permeability—a Study Based on the Gut–Brain Axis Hypothesis

2021 ◽  
Vol 12 ◽  
Author(s):  
Hesong Wang ◽  
Shunhui He ◽  
Jinge Xin ◽  
Tao Zhang ◽  
Ning Sun ◽  
...  

Though the underlying mechanism remains elusive, a close relationship between psychological stress and intestinal inflammation has been widely accepted. Such a link is very important to set the basis for our understanding of the critical role of gut-brain axis (GBA) in homeostatic processes in health and disease. Probiotics that could confer benefits to mental health through GBA are referred to as “psychobiotics”. This study aimed to further determine whether a potential psychobiotic strain, Lactobacillus johnsonii BS15 could prevent memory dysfunction in mice induced by psychological stress through modulating the gut environment, including intestinal inflammation and permeability. Memory dysfunction in mice was induced by restraint stress (RS), one of the most commonly utilized models to mimic psychological stress. The mice were randomly categorized into three groups including no stress (NS), restraint stress (RS), and probiotic (RS-P) and administered with either phosphate buffered saline (NS and RS groups) or L. johnsonii BS15 (RS-P group) every day from day 1–28. From days 22–28, the mice in RS and RS-P groups were subjected to RS each day. Results revealed that BS15-pretreatment enhanced the performance of RS-induced mice during three different behavioral tests for memory ability and positively modulated the hypothalamic–pituitary–adrenal axis by attenuating the serum corticosterone level. In the hippocampus, L. johnsonii BS15 positively modulated the memory-related functional proteins related to synaptic plasticity, increased neurotransmitter levels, and prevented RS-induced oxidative stress and mitochondria-mediated apoptosis. In the intestines, L. johnsonii BS15 protected the RS-induced mice from damaged gut barrier by enhancing the mRNA levels of tight junction proteins and exerted beneficial effects on the anti-inflammatory cytokine levels reduced by RS. These findings provided more evidence to reveal the psychoactive effect of L. johnsonii BS15 against memory dysfunction in RS-induced mice by modulating intestinal inflammation and permeability.

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1535-1535
Author(s):  
Vishal Singh ◽  
Beng San Yeoh ◽  
Matam Vijay-Kumar

Abstract Objectives Appreciation of the therapeutic benefits of fermentable dietary fibers (FDFs) in inflammatory bowel disease (IBD) is continuously growing. Herein, we examined the effect, and underlying mechanism(s), of FDF pectin on IBD development by using a preclinical model of intestinal inflammation. Methods Chronic colitis was induced in dietary cellulose or pectin-fed WT mice by administering four weekly injections of interleukin (IL)-10 receptor neutralizing antibody. Mice were euthanized two weeks after the last injection, and colitis development was examined by gross colon appearance, serological, and histological markers. Results The control group, which received insoluble fiber cellulose, developed extensive colonic inflammation as evident via colomegaly, splenomegaly, elevated pro-inflammatory cytokines including IL-1β, and distorted colonic crypts. Relative to cellulose, the level of inflammatory cytokines and histological scores were reduced in the pectin-fed mice. To understand the mechanism(s) by which dietary pectin alleviated intestinal inflammation, we analyzed the gut microbiota composition, its metabolic products, and inflammation regulators in our model. Compared to cellulose, pectin reduced the abundance of Verrucomicrobia and elevated acetate, an immune response modulator, in the cecal content. Inline, pectin-fed mice displayed reduced colonic IL-1β and heightened expression of inflammasome component NLRC4 in colonic epithelial crypts. Moreover, the colonic level of IL-1 receptor antagonist (IL-1Ra, a natural endogenous inhibitor of IL-1β), whose expression is partly regulated via NLRC4, was also elevated in mice fed pectin. The lack of pectin-mediated protective effects in NLRC4-deficient and IL-1Ra-deficient mice indicated that the NLRC4-IL-1Ra axis executes the beneficial effects of pectin during gut inflammation. Considering that IL-1Ra restrains the pro-inflammatory activity of IL-1β, this study suggests that pectin derived metabolites promote NLRC4 signaling, which augments IL-1Ra and thus limits IL-1β mediated colonic inflammation. Conclusions Altogether, our study demonstrates that microbial metabolism, of FDFs, and NLRC4 inflammasome axis mediates the beneficial effects of pectin in the inflamed gut. Funding Sources Career Development Award [ID# 597,229] from Crohn's & Colitis Foundation (CCF).


2020 ◽  
Vol 168 (3) ◽  
pp. 305-312
Author(s):  
Keigo Matsuno ◽  
Shun Nagashima ◽  
Isshin Shiiba ◽  
Keito Taniwaka ◽  
Keisuke Takeda ◽  
...  

Abstract In mitochondrial disorders, short stature and growth failure are common symptoms, but their underlying mechanism remains unknown. In this study, we examined the cause of growth failure of mice induced by nestin promoter-driven knockout of the mitochondrial ubiquitin ligase MITOL (MARCH5), a key regulator of mitochondrial function. MITOL-knockout mice have congenital hypoplasia of the anterior pituitary caused by decreased expression of pituitary transcript factor 1 (Pit1). Consistently, both mRNA levels of growth hormone (GH) and prolactin levels were markedly decreased in the anterior pituitary of mutant mice. Growth failure of mutant mice was partly rescued by hypodermic injection of recombinant GH. To clarify whether this abnormality was induced by the primary effect of MITOL knockdown in the anterior pituitary or a secondary effect of other lesions, we performed lentiviral-mediated knockdown of MITOL on cultured rat pituitary GH3 cells, which secrete GH. GH production was severely compromised in MITOL-knockdown GH3 cells. In conclusion, MITOL plays a critical role in the development of the anterior pituitary; therefore, mice with MITOL dysfunction exhibited pituitary dwarfism caused by anterior pituitary hypoplasia. Our findings suggest that mitochondrial dysfunction is commonly involved in the unknown pathogenesis of pituitary dwarfism.


2020 ◽  
Vol 26 (34) ◽  
pp. 4330-4337
Author(s):  
Jennifer Gile ◽  
Yoshimasa Oyama ◽  
Sydney Shuff ◽  
Tobias Eckle

Background: We recently reported a role for the circadian rhythm protein Period 2 (PER2) in midazolam induced cognitive dysfunction. Based on previous studies showing a critical role for the adenosine A2B receptor (ADORA2B) in PER2 regulation, we hypothesized that hippocampal ADORA2B is crucial for cognitive function. Methods: Midazolam treated C57BL/6J mice were analyzed for Adora2b hippocampal mRNA expression levels, and spontaneous T-maze alternation was determined in Adora2b-/- mice. Using the specific ADORA2B agonist BAY-60-6583 in midazolam treated C57BL/6J mice, we analyzed hippocampal Per2 mRNA expression levels and spontaneous T-maze alternation. Finally, Adora2b-/- mice were assessed for mRNA expression of markers for inflammation or cognitive function in the hippocampus. Results: Midazolam treatment significantly downregulated Adora2b or Per2 mRNA in the hippocampus of C57BL/6J mice, and hippocampal PER2 protein expression or T-maze alternation was significantly reduced in Adora2b-/- mice. ADORA2B agonist BAY-60-6583 restored midazolam mediated reduction in spontaneous alternation in C57BL/6J mice. Analysis of hippocampal Tnf-α or Il-6 mRNA levels in Adora2b-/- mice did not reveal an inflammatory phenotype. However, C-fos, a critical component of hippocampus-dependent learning and memory, was significantly downregulated in the hippocampus of Adora2b-/- mice. Conclusion: These results suggest a role of ADORA2B in midazolam induced cognitive dysfunction. Further, our data demonstrate that BAY-60-6583 treatment restores midazolam induced cognitive dysfunction, possibly via increases of Per2. Additional mechanistic studies hint towards C-FOS as another potential underlying mechanism of memory impairment in Adora2b-/- mice. These findings suggest the ADORA2B agonist as a potential therapy in patients with midazolam induced cognitive dysfunction.


2020 ◽  
Vol 21 (15) ◽  
pp. 1666-1673 ◽  
Author(s):  
Yuanyang Dong ◽  
Jiaqi Lei ◽  
Bingkun Zhang

Background: The prevalence of inflammatory bowel disease is rapidly increasing around the world. Quercetin is a flavonoid commonly found in vegetables and fruits and has been reported to exert numerous pharmacological activities such as enhancing antioxidant capacity or suppressing inflammation. Objective: We aimed to explore whether quercetin was effective for IBD and the underlying mechanism of quercetin for the ameliorative effects on the DSS-induced colitis in mice. Methods: Thirty-six mice were randomly assigned to three treatments, including the control group (Ctr), DSS-induced colitis group (DSS) and DSS-induced colitis supplemented with 500 ppm quercetin (DQ500). Colitis was induced by DSS intake, and body weight was recorded every day. After six days administration of DSS, intestinal permeability was measured, and the liver was taken for antioxidant enzyme tests. Colonic tissue was taken for the histopathlogical score and RNA-sequencing analysis. Results: In this experiment, dietary quercetin for 500ppm alleviated the DSS-induced colitis, possibly by strengthening intestinal integrity, liver antioxidant capacity. Based on the results of the transcriptome of colon tissue, several key genes were modulated by quercetin. ERK1/2-FKBP pathway and RXR-STAT3 pathway were involved in the development of IBD, furthermore, in the down-regulation of S100a8/9, FBN2 contributed to lowering the risk of colongenesis. Conclusion: We demonstrated that dietary quercetin alleviated the DSS-induced colitis in mice. This is most likely due to its beneficial effects on intestinal integrity and modulation of several key pathways. Based on our research, quercetin was a promising candidate for IBD and its pharmaceutical effects on both IBD and colongenesis need further research.


Zygote ◽  
2020 ◽  
Vol 28 (2) ◽  
pp. 160-169 ◽  
Author(s):  
Jie Zhang ◽  
De-Ling Kong ◽  
Bin Xiao ◽  
Hong-Jie Yuan ◽  
Qiao-Qiao Kong ◽  
...  

SummaryStudies have indicated that psychological stress impairs human fertility and that various stressors can induce apoptosis of testicular cells. However, the mechanisms by which psychological stress on males reduces semen quality and stressors induce apoptosis in testicular cells are largely unclear. Using a psychological (restraint) stress mouse model, we tested whether male psychological stress triggers apoptosis of spermatozoa and spermatogenic cells through activating tumour necrosis factor (TNF)-α signalling. Wild-type or TNF-α−/− male mice were restrained for 48 h before examination for apoptosis and expression of TNF-α and TNF receptor 1 (TNFR1) in spermatozoa, epididymis, seminiferous tubules and spermatogenic cells. The results showed that male restraint significantly decreased fertilization rate and mitochondrial membrane potential, while increasing levels of malondialdehyde, active caspase-3, TNF-α and TNFR1 in spermatozoa. Male restraint also increased apoptosis and expression of TNF-α and TNFR1 in caudae epididymides, seminiferous tubules and spermatogenic cells. Sperm quality was also significantly impaired when spermatozoa were recovered 35 days after male restraint. The restraint-induced damage to spermatozoa, epididymis and seminiferous tubules was significantly ameliorated in TNF-α−/− mice. Furthermore, incubation with soluble TNF-α significantly reduced sperm motility and fertilizing potential. Taken together, the results demonstrated that male psychological stress induces apoptosis in spermatozoa and spermatogenic cells through activating the TNF-α system and that the stress-induced apoptosis in spermatogenic cells can be translated into impaired quality in future spermatozoa.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2630
Author(s):  
Jiah Yeom ◽  
Seongho Ma ◽  
Jeong-Keun Kim ◽  
Young-Hee Lim

Colitis causes destruction of the intestinal mucus layer and increases intestinal inflammation. The use of antioxidants and anti-inflammatory agents derived from natural sources has been recently highlighted as a new approach for the treatment of colitis. Oxyresveratrol (OXY) is an antioxidant known to have various beneficial effects on human health, such as anti-inflammatory, antibacterial activity, and antiviral activity. The aim of this study was to investigate the therapeutic effect of OXY in rats with dextran sulfate sodium (DSS)-induced acute colitis. OXY ameliorated DSS-induced colitis and repaired damaged intestinal mucosa. OXY downregulated the expression of pro-inflammatory cytokine genes (TNF-α, IL-6, and IL-1β) and chemokine gene MCP-1, while promoting the production of anti-inflammatory cytokine IL-10. OXY treatment also suppressed inflammation via inhibiting cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression in the colon, as well as the activity of myeloperoxidase (MPO). OXY exhibited anti-apoptotic effects, shifting the Bax/Bcl-2 balance. In conclusion, OXY might improve DSS-induced colitis by restoring the intestinal mucus layer and reducing inflammation within the intestine.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1282
Author(s):  
Ariuntsetseg Khurelchuluun ◽  
Osamu Uehara ◽  
Durga Paudel ◽  
Tetsuro Morikawa ◽  
Yutaka Kawano ◽  
...  

Background: Bee pollen (BP) has a broad range of beneficial effects on health. The aim of this study was to examine the effect of BP on the oral environment, including the microbiome and antimicrobial peptides. Methods: C57BL/6J mice were randomly divided into two groups: control and BP. The BP group was fed with a 5% BP diet for 1 month. Swabs from the oral and buccal mucosa and samples of the intestinal stool were collected. Genomic DNA was extracted and the microbiome was analyzed via 16S rRNA sequencing. Results: BP inhibited the growth of P. gingivalis at a concentration of >2.5%. The metagenomic study showed that the abundance of genus Lactococcus was significantly elevated in the oral and intestinal microbiomes of the BP group when compared to those of the control group. Significant alterations in alpha and beta diversity were observed between the oral microbiomes of the two groups. The mRNA levels of beta-defensin-2 and -3 were significantly upregulated in the buccal mucosa of the BP group. Conclusion: A BP diet may have a beneficial effect on oral and systemic health by modulating the bacterial flora and antimicrobial peptides of the oral cavity. Further investigations are needed to clarify how a BP diet affects overall human health.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 393
Author(s):  
Oliver Neuhaus ◽  
Wolfgang Köhler ◽  
Florian Then Bergh ◽  
Wolfgang Kristoferitsch ◽  
Jürgen Faiss ◽  
...  

Although fatigue is a common symptom in multiple sclerosis (MS), its pathomechanisms are incompletely understood. Glatiramer acetate (GA), an immunomodulatory agent approved for treatment of relapsing-remitting MS (RRMS), possesses unique mechanisms of action and has been shown to exhibit beneficial effects on MS fatigue. The objective of this study was to correlate clinical, neuropsychological, and immunological parameters in RRMS patients with fatigue before and during treatment with GA. In a prospective, open-label, multicenter trial, 30 patients with RRMS and fatigue were treated with GA for 12 months. Inclusion criterion was the presence of fatigue as one of the most frequent and disabling symptoms. Before and during treatment, fatigue was assessed using the Fatigue Severity Scale (FSS), the MS-FSS, and the Modified Fatigue Impact Scale (MFIS). In addition, fatigue and quality of life were assessed using the Visual Analog Scales (VAS). Laboratory assessments included screening of 188 parameters using real-time PCR microarrays followed by further analysis of several cytokines, chemokines, and neurotrophic factors. Fatigue self-assessments were completed in 25 patients. After 12 months of treatment with GA, 13 of these patients improved in all three scales (with the most prominent effects on the MFIS), whereas 5 patients had deteriorated. The remaining 7 patients exhibited inconsistent effects within the three scales. Fatigue and overall quality of life had improved, as assessed via VAS. Laboratory assessments revealed heterogeneous mRNA levels of cytokines, chemokines, and neurotrophic factors. In conclusion, we were not able to correlate clinical and molecular effects of GA in patients with RRMS and fatigue.


2021 ◽  
Vol 7 (5) ◽  
pp. eabc5062
Author(s):  
Lei Cao ◽  
Siping Xiong ◽  
Zhiyuan Wu ◽  
Lei Ding ◽  
Yebo Zhou ◽  
...  

Na+/K+-ATPase (NKA) plays important roles in maintaining cellular homeostasis. Conversely, reduced NKA activity has been reported in aging and neurodegenerative diseases. However, little is known about the function of NKA in the pathogenesis of Parkinson’s disease (PD). Here, we report that reduction of NKA activity in NKAα1+/− mice aggravates α-synuclein–induced pathology, including a reduction in tyrosine hydroxylase (TH) and deficits in behavioral tests for memory, learning, and motor function. To reverse this effect, we generated an NKA-stabilizing monoclonal antibody, DR5-12D, against the DR region (897DVEDSYGQQWTYEQR911) of the NKAα1 subunit. We demonstrate that DR5-12D can ameliorate α-synuclein–induced TH loss and behavioral deficits by accelerating α-synuclein degradation in neurons. The underlying mechanism for the beneficial effects of DR5-12D involves activation of NKAα1-dependent autophagy via increased AMPK/mTOR/ULK1 pathway signaling. Cumulatively, this work demonstrates that NKA activity is neuroprotective and that pharmacological activation of this pathway represents a new therapeutic strategy for PD.


Sign in / Sign up

Export Citation Format

Share Document