scholarly journals An Exploratory Pilot Study of Changes in Global DNA Methylation in Patients Undergoing Major Breast Surgery Under Opioid-Based General Anesthesia

2021 ◽  
Vol 12 ◽  
Author(s):  
Francesca Felicia Caputi ◽  
Lucia Carboni ◽  
Laura Rullo ◽  
Irene Alessandrini ◽  
Eleonora Balzani ◽  
...  

This study aimed to investigate DNA methylation levels in patients undergoing major breast surgery under opioid-based general anesthesia. Blood samples were collected from eleven enrolled patients, before, during and after anesthesia. PBMC were isolated and global DNA methylation levels as well as DNA methyltransferase (DNMT) and cytokine gene expression were assessed. DNA methylation levels significantly declined by 26%, reversing the direction after the end of surgery. Likewise, DNMT1a mRNA expression was significantly reduced at all time points, with lowest level of −68%. DNMT3a and DNMT3b decreased by 65 and 71%, respectively. Inflammatory cytokines IL6 and TNFα mRNA levels showed a trend for increased expression at early time-points to end with a significant decrease at 48 h after surgery. This exploratory study revealed for the first time intraoperative global DNA hypomethylation in patients undergoing major breast surgery under general anesthesia with fentanyl. The alterations of global DNA methylation here observed seem to be in agreement with DNMTs gene expression changes. Furthermore, based on perioperative variations of IL6 and TNFα gene expression, we hypothesize that DNA hypomethylation may occur as a response to surgical stress rather than to opiate exposure.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1360.2-1360
Author(s):  
E. Toussirot ◽  
S. Pasquereau ◽  
C. Vauchy ◽  
Z. Nehme ◽  
D. Wendling ◽  
...  

Background:Axial spondyloarthritis (ax-SpA) corresponds to a group of chronic inflammatory disease mainly affecting the axial skeleton. TNFα and IL-17A have been identified as key inflammatory mediators driving the inflammatory process of ax-SpA. Epigenetics refers to different mechanisms that alter gene expression without involving changes in DNA sequence. The mechanisms of epigenetics include microRNA, histone modifications or DNA methylation. DNA methylation is associated with a repressed chromatin state and inhibition of gene expression. It is recognized that aberrant DNA methylation can result in immune cell autoreactivity.Objectives:Epigenetics have been rarely evaluated in ax-SpA. We previoulsy reported that patients with ankysloing spondylitis (AS) had an imbalance between HAT and HDAC activities. In this study, we aimed to evaluate the global DNA methylation of patients with ax-SpA.Methods:Case-control study (NCT03092583). Patients with radiographic (AS) or non radiographic (nr) ax-SpA (ASAS criteria) and healthy controls (HC) were evaluated. All the patients were biologic naïve and under NSAIDs. Disease activity was evaluated by BASDAI and ASDAS. CD4+T cells and CD14+ monocytes were isolated form peripheral blood and then DNA was extracted (E.Z.N.A. Blood DNA kit, Omega Bio-Tek). Global DNA methylation (5-mC) was determined using MethylAmp global DNA methylation quantification kit (Epigentek) using 150ng of total DNA.Results:25 patients with AS (18 M; mean age ± SEM: 48.9 ± 3.5 y; mean disease duration: 14.9 ± 2.2 y; B27+: 84%), 21 with nr-axSpA (11 M; age: 42 ± 3.3 y; disease duration: 7.9 ± 2.3 y; B27+: 68%) and 11 HC (7 M; age: 48.4 ± 3.9 y) were evaluated. Patients had active disease (BASDAI and ASDAS in AS and nr-axSpA: 5.1 ± 0.4 and 5.4 ± 0.5; 4.7 ± 0.4 and 5 ± 0.4, respectively). In CD4+ T lymphocytes, global DNA methylation was lower in the whole group of patients (AS and nr-ax-SpA) compared to HC (0.91 ± 0.26vs1.08 ± 0.19 % of 5-mC) (NS). Conversely, DNA methylation was higher in monocytes from patients compared to HC (1.43 ± 0.16vs1.15 ± 0.5 % of 5-mC) (NS). When analysing the results between ax-SpA subgroups, an hypomethylation was more evident in the CD4+T lymphocytes from patients with nr-axSpA compared to AS and HC, a result that was not observed in the monocyte subpopulation (Figures).Conclusion:A global DNA hypomethylation is observed in patients with ax-SpA, especially in the nr-axSpA subgroup. These results are more evident in T CD4+ lymphocytes. Additional analysis on a larger series of patients is required to confirm these preliminary results. In addition, we aim to examine the specific DNA methylation status of the TNF promoter gene.References:[1]Toussirot Eet al, PlosOne 2013Figure.global DNA methylation of CD4+ T lymphocytes and monocyctes from patients with ankylosing spondylitis (AS), non radiographic axial spondyloarthritis (nr-ax-SpA) and healthy controls (HC)Disclosure of Interests:None declared


2004 ◽  
Vol 18 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Nicole K. MacLennan ◽  
S. Jill James ◽  
Stephan Melnyk ◽  
Ali Piroozi ◽  
Stefanie Jernigan ◽  
...  

Uteroplacental insufficiency leads to intrauterine growth retardation (IUGR) and increases the risk of insulin resistance and hypertriglyceridemia in both humans and rats. Postnatal changes in hepatic gene expression characterize the postnatal IUGR rat, despite the transient nature of the initial in utero insult. Phenomena such as DNA methylation and histone acetylation can induce a relatively static reprogramming of gene transcription by altering chromatin infrastructure. We therefore hypothesized that uteroplacental insufficiency persistently affects DNA methylation and histone acetylation in the IUGR rat liver. IUGR rat pups were created by inducing uteroplacental insufficiency through bilateral uterine artery ligation of the pregnant dam on day 19 of gestation. The SssI methyltransferase assay and two-dimensional thin-layer chromatography demonstrated genome-wide DNA hypomethylation in postnatal IUGR liver. To investigate a possible mechanism for this hypomethylation, levels of hepatic metabolites and enzyme mRNAs involved in one-carbon metabolism were measured using HPLC with coulometric electrochemical detection and real-time RT-PCR, respectively. Uteroplacental insufficiency increased IUGR levels of S-adenosylhomocysteine, homocysteine, and methionine in association with decreased mRNA levels of methionine adenosyltransferase and cystathionine-β-synthase. Western blotting further demonstrated that increased quantities of acetylated histone H3 also characterized the IUGR liver. Increased hepatic levels of S-adenosylhomocysteine can promote DNA hypomethylation, which is often associated with histone hyperacetylation. We speculate that the altered intrauterine milieu associated with uteroplacental insufficiency affects hepatic one-carbon metabolism and subsequent DNA methylation, which thereby alters chromatin dynamics and leads to persistent changes in hepatic gene expression.


Epigenomics ◽  
2021 ◽  
Author(s):  
Beatriz Garcia-Ruiz ◽  
Manuel Castro de Moura ◽  
Gerard Muntané ◽  
Lourdes Martorell ◽  
Elena Bosch ◽  
...  

Aim: To investigate DDR1 methylation in the brains of bipolar disorder (BD) patients and its association with DDR1 mRNA levels and comethylation with myelin genes. Materials & methods: Genome-wide profiling of DNA methylation (Infinium MethylationEPIC BeadChip) corrected for glial composition and DDR1 gene expression analysis in the occipital cortices of individuals with BD (n = 15) and healthy controls (n = 15) were conducted. Results: DDR1 5-methylcytosine levels were increased and directly associated with DDR1b mRNA expression in the brains of BD patients. We also observed that DDR1 was comethylated with a group of myelin genes. Conclusion: DDR1 is hypermethylated in BD brain tissue and is associated with isoform expression. Additionally, DDR1 comethylation with myelin genes supports the role of this receptor in myelination.


2018 ◽  
Vol 25 (1) ◽  
pp. 107327481881290 ◽  
Author(s):  
A. E. Zubidat ◽  
B. Fares ◽  
F. Fares ◽  
A. Haim

Lighting technology is rapidly advancing toward shorter wavelength illuminations that offer energy-efficient properties. Along with this advantage, the increased use of such illuminations also poses some health challenges, particularly breast cancer progression. Here, we evaluated the effects of artificial light at night (ALAN) of 4 different spectral compositions (500-595 nm) at 350 Lux on melatonin suppression by measuring its urine metabolite 6-sulfatoxymelatonin, global DNA methylation, tumor growth, metastases formation, and urinary corticosterone levels in 4T1 breast cancer cell-inoculated female BALB/c mice. The results revealed an inverse dose-dependent relationship between wavelength and melatonin suppression. Short wavelength increased tumor growth, promoted lung metastases formation, and advanced DNA hypomethylation, while long wavelength lessened these effects. Melatonin treatment counteracted these effects and resulted in reduced cancer burden. The wavelength suppression threshold for melatonin-induced tumor growth was 500 nm. These results suggest that short wavelength increases cancer burden by inducing aberrant DNA methylation mediated by the suppression of melatonin. Additionally, melatonin suppression and global DNA methylation are suggested as promising biomarkers for early diagnosis and therapy of breast cancer. Finally, ALAN may manifest other physiological responses such as stress responses that may challenge the survival fitness of the animal under natural environments.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2608-2608
Author(s):  
Claudia Gebhard ◽  
Roger Mulet-Lazaro ◽  
Lucia Schwarzfischer ◽  
Dagmar Glatz ◽  
Margit Nuetzel ◽  
...  

Abstract Acute myeloid leukemia (AML) represents a highly heterogeneous myeloid stem cell disorder classified based on various genetic defects. Besides genetic alterations, epigenetic changes are recognized as an additional mechanism contributing to leukemogenesis, but insight into the latter process remains minor. Using a combination of Methyl-CpG-Immunoprecipitation (MCIp-chip) and MALDI-TOF analysis of bisulfite-treated DNA in a cohort of 196 AML patients we previously demonstrated that (cyto)genetically defined AML subtypes, including CBFB-MYH11, AML-ETO, NPM1-mut, CEBPA-mut or IDH1/2-mut subtypes, express specific DNA-methylation profiles (Gebhard et al, Leukemia, 2018). A fraction of AML patients (5/196) displayed a unique abnormal hypermethylation profile that was completely distinct from any other AML subtype. These patients present immature leukemia (FAB M0, M1) with various chromosomal aberrations but very few mutations (e.g. no IDH1/2, KRAS, DNMT3A) that might explain the CpG island methylator phenotype (CIMP) phenotype. The CIMP patients showed high resemblance with a recently reported CEBPA methylated subgroup (Wouters et al, 2007 and Figueroa et al, 2009), which we confirmed by MCIp-chip and MALDI-TOF analysis. To explore the whole range of epigenetic alterations in the CIMP-AML patients we performed in-depth global DNA methylation and gene expression analyses (MCIp-seq and RNA-seq) in 45 AML and 12 CIMP patients from both studies. Principle component analysis and t-distributed stochastic neighbor embedding (t-SNE) revealed that CIMP patients express a unique DNA-methylation and gene-expression signature that separated them from all other AMLs. We could discriminate promoter methylation from non-promoter methylation by selecting MCIp-seq peaks within 3kb around TSS. Promoter hypermethylation was highly associated with repression of genes (PCC = -0.053, p-value = 0.00075). Hypermethylation of non-promoter regions was more strongly associated with upregulation of genes (PCC = 0.046, p-value = 4.613e-06). Interestingly, differentially methylated regions also showed a positive association with myeloid lineage CTCF binding sites (27% vs 18% expected, p-value < 2.2e-16 in a chi-square test of independence). Methylation of CTCF sites causes loss of CTCF binding, which has been reported to disrupt boundaries between so-called topologically associated domains (TADs), allowing enhancers located in a particular TAD to become accessible to genes in adjacent TADs and affect their transcription. Whether this is the case is under investigation. In this study we particularly focused on the role of hypermethylation of promoters in CIMP-AMLs. Promoters of many transcriptional regulators that are involved in the differentiation of myeloid lineages of which several are frequently mutated in AML were hypermethylated and repressed, including CEBPA, CEBPD, IRF8, GATA2, KLF4, MITF or MAFB. Notably, HMGA2, a critical regulator of myeloid progenitor expansion, exhibited the largest degree of CIMP promoter hypermethylation compared to the other AMLs, accompanied by a reduction in gene expression. Moreover, multiple members of the HOXB family and KLF1 (erythroid differentiation) were methylated and repressed as well. In addition, these patients frequently showed hypermethylation of many chromatin factors (e.g. LMNA, CHD7 or TET2). Hypermethylation of the TET2 promoter could result in a loss of maintenance DNA demethylation and therefore successive hypermethylation at CpG islands. We carried out regulome-capture-bisulfite sequencing on CIMP-AMLs compared to other AML samples and normal blood cell controls and confirmed methylation of the same transcription and chromatin factor promoters. We conclude that these leukemias represent very primitive HSCPs which are blocked in differentiation into multiple hematopoietic lineages, due to the absence of regulators of these lineages. Although the underlying cause for the extreme hypermethylation signature is still subject to ongoing studies, the consequence of promoter hypermethylation is silencing of key lineage regulators causing the differentiation arrest in these cells. We argue that these patients may particularly benefit from therapies that revert DNA methylation. Disclosures Ehninger: Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; GEMoaB Monoclonals GmbH: Employment, Equity Ownership; Bayer: Research Funding. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding.


Toxics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 338
Author(s):  
Karin Engström ◽  
Yumjirmaa Mandakh ◽  
Lana Garmire ◽  
Zahra Masoumi ◽  
Christina Isaxon ◽  
...  

Exposure to ambient air pollution during pregnancy has been associated with an increased risk of preeclampsia (PE). Some suggested mechanisms behind this association are changes in placental DNA methylation and gene expression. The objective of this study was to identify how early pregnancy exposure to ambient nitrogen oxides (NOx) among PE cases and normotensive controls influence DNA methylation (EPIC array) and gene expression (RNA-seq). The study included placentas from 111 women (29 PE cases/82 controls) in Scania, Sweden. First-trimester NOx exposure was assessed at the participants’ residence using a dispersion model and categorized via median split into high or low NOx. Placental gestational epigenetic age was derived from the DNA methylation data. We identified six differentially methylated positions (DMPs, q < 0.05) comparing controls with low NOx vs. cases with high NOx and 14 DMPs comparing cases and controls with high NOx. Placentas with female fetuses showed more DMPs (N = 309) than male-derived placentas (N = 1). Placentas from PE cases with high NOx demonstrated gestational age deceleration compared to controls with low NOx (p = 0.034). No differentially expressed genes (DEGs, q < 0.05) were found. In conclusion, early pregnancy exposure to NOx affected placental DNA methylation in PE, resulting in placental immaturity and showing sexual dimorphism.


2019 ◽  
Vol 33 (12) ◽  
pp. 1550-1561 ◽  
Author(s):  
Maria Vittoria Micioni Di Bonaventura ◽  
Mariangela Pucci ◽  
Maria Elena Giusepponi ◽  
Adele Romano ◽  
Catia Lambertucci ◽  
...  

Background:Pharmacological treatment approaches for eating disorders, such as binge eating disorder and bulimia nervosa, are currently limited.Methods and aims:Using a well-characterized animal model of binge eating, we investigated the epigenetic regulation of the A2AAdenosine Receptor (A2AAR) and dopaminergic D2 receptor (D2R) genes.Results:Gene expression analysis revealed a selective increase of both receptor mRNAs in the amygdaloid complex of stressed and restricted rats, which exhibited binge-like eating, when compared to non-stressed and non-restricted rats. Consistently, pyrosequencing analysis revealed a significant reduction of the percentage of DNA methylation but only at the A2AAR promoter region in rats showing binge-like behaviour compared to the control animals. Focusing thus on A2AAR agonist (VT 7) administration (which inhibited the episode of binge systemically at 0.1 mg/kg or intra-central amygdala (CeA) injection at 900 ng/side) induced a significant increase of A2AAR mRNA levels in restricted and stressed rats when compared to the control group. In addition, we observed a significant decrease in A2AAR mRNA levels in rats treated with the A2AAR antagonist (ANR 94) at 1 mg/kg. Consistent changes in the DNA methylation status of the A2AAR promoter were found in restricted and stressed rats after administration of VT 7 or ANR 94.Conclusion:We confirm the role of A2AAR in binge eating behaviours, and we underline the importance of epigenetic regulation of the A2AAR gene, possibly due to a compensatory mechanism to counteract the effect of binge eating. We suggest that A2AAR activation, inducing receptor gene up-regulation, could be relevant to reduction of food consumption.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kaoutar Ennour-Idrissi ◽  
Dzevka Dragic ◽  
Francine Durocher ◽  
Caroline Diorio

Abstract Background DNA methylation is a potential biomarker for early detection of breast cancer. However, robust evidence of a prospective relationship between DNA methylation patterns and breast cancer risk is still lacking. The objective of this study is to provide a systematic analysis of the findings of epigenome-wide DNA methylation studies on breast cancer risk, in light of their methodological strengths and weaknesses. Methods We searched major databases (MEDLINE, EMBASE, Web of Science, CENTRAL) from inception up to 30th June 2019, for observational or intervention studies investigating the association between epigenome-wide DNA methylation (using the HM450k or EPIC BeadChip), measured in any type of human sample, and breast cancer risk. A pre-established protocol was drawn up following the Cochrane Reviews rigorous methodology. Study selection, data abstraction, and risk of bias assessment were performed by at least two investigators. A qualitative synthesis and systematic comparison of the strengths and weaknesses of studies was performed. Results Overall, 20 studies using the HM450k BeadChip were included, 17 of which had measured blood-derived DNA methylation. There was a consistent trend toward an association of global blood-derived DNA hypomethylation and higher epigenetic age with higher risk of breast cancer. The strength of associations was modest for global hypomethylation and relatively weak for most of epigenetic age algorithms. Differences in length of follow-up periods may have influenced the ability to detect associations, as studies reporting follow-up periods shorter than 10 years were more likely to observe an association with global DNA methylation. Probe-wise differential methylation analyses identified between one and 806 differentially methylated CpGs positions in 10 studies. None of the identified differentially methylated sites overlapped between studies. Three studies used breast tissue DNA and suffered major methodological issues that precludes any conclusion. Overall risk of bias was critical mainly because of incomplete control of confounding. Important issues relative to data preprocessing could have limited the consistency of results. Conclusions Global DNA methylation may be a short-term predictor of breast cancer risk. Further studies with rigorous methodology are needed to determine spatial distribution of DNA hypomethylation and identify differentially methylated sites associated with risk of breast cancer. Prospero registration number CRD42020147244


Toxics ◽  
2015 ◽  
Vol 3 (4) ◽  
pp. 451-461 ◽  
Author(s):  
Laura Bordoni ◽  
Cinzia Nasuti ◽  
Maria Mirto ◽  
Fabio Caradonna ◽  
Rosita Gabbianelli

2021 ◽  
Author(s):  
Baoying Guo ◽  
Dan Feng ◽  
Pengzhi Qi ◽  
Zhi Liao ◽  
Xiaojun Yan

Abstract The blood clam is being developed into a model bivalve molluscs for assessing and monitoring marine pollution on the offshore seabed. However, the information on the response of blood clam to PAHs, an organic pollutant usually deposited in submarine sediment, remains limited. Herein, we employed multiple biomarkers, including histological changes, oxidative stress, neurotoxicity and global DNA methylation, to investigate the effects of Bap exposure under laboratory conditions on blood clams and its potential mechanisms. Acute Bap exposure can induce significant morphological abnormalities in gills as shown through hematoxylin-eosin (H.E) staining, providing an intuitive understanding on the effects of Bap on the structural organization of blood clams. Meanwhile, the oxidative stress was significantly elevated as manifested by the increase of antioxidants activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione-s-transferase (GST), lipid peroxidation (LPO) level and 8-hydroxy-2’-deoxyguanosine (8-OHdG) content. The neurotoxicity was also strengthened by Bap toxicity manifested as inhibited acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) activities. In addition, the global DNA methylation level was investigated, and a significant DNA hypomethylation was observed in Bap exposed blood clams. The correlation analysis showed that the global DNA methylation was negatively correlated with antioxidants (SOD, CAT and POD) activities, but positively correlated choline enzymes (AChE and ChAT) activities. These results collectively suggested that acute Bap exposure can cause damage in gills structures in blood clams possibly by generating oxidative stress and neurotoxicity, and the global DNA methylation was inhibited to increase the transcriptional expression level of antioxidants genes and consequently elevate antioxidants activities against Bap toxicity. These results are hoped to shed some new light on the study of ecotoxicology effect of PAHs on marine bivalves.


Sign in / Sign up

Export Citation Format

Share Document