scholarly journals Evolutionary Comparison of the Developmental/Physiological Phenotype and the Molecular Behavior of SPIRRIG Between Arabidopsis thaliana and Arabis alpina

2021 ◽  
Vol 11 ◽  
Author(s):  
Lisa Stephan ◽  
Marc Jakoby ◽  
Martin Hülskamp

Beige and Chediak Higashi (BEACH) domain proteins mediate membrane-dependent processes in eukaryotic cells. The plant BEACH domain protein SPIRRIG in A. thaliana (AtSPI) was shown to display a similar molecular behavior as its yeast and animal homologs, along with a range of cell morphological defects. In addition, AtSPI was shown to interact with the P-body component DCP1, to differentially effect RNA levels and to be involved in the regulation of RNA stability in the context of salt stress responses. To determine, whether the dual function of SPI in apparently unrelated molecular pathways and traits is evolutionary conserved, we analyzed three Aaspi alleles in Arabis alpina. We show that the molecular behavior of the SPI protein and the role in cell morphogenesis and salt stress response are similar in the two species, though we observed distinct deviations in the phenotypic spectrum.

2007 ◽  
Vol 27 (22) ◽  
pp. 7771-7780 ◽  
Author(s):  
Paul E. Verslues ◽  
Giorgia Batelli ◽  
Stefania Grillo ◽  
Fernanda Agius ◽  
Yong-Sig Kim ◽  
...  

ABSTRACT SOS2, a class 3 sucrose-nonfermenting 1-related kinase, has emerged as an important mediator of salt stress response and stress signaling through its interactions with proteins involved in membrane transport and in regulation of stress responses. We have identified additional SOS2-interacting proteins that suggest a connection between SOS2 and reactive oxygen signaling. SOS2 was found to interact with the H2O2 signaling protein nucleoside diphosphate kinase 2 (NDPK2) and to inhibit its autophosphorylation activity. A sos2-2 ndpk2 double mutant was more salt sensitive than a sos2-2 single mutant, suggesting that NDPK2 and H2O2 are involved in salt resistance. However, the double mutant did not hyperaccumulate H2O2 in response to salt stress, suggesting that it is altered signaling rather than H2O2 toxicity alone that is responsible for the increased salt sensitivity of the sos2-2 ndpk2 double mutant. SOS2 was also found to interact with catalase 2 (CAT2) and CAT3, further connecting SOS2 to H2O2 metabolism and signaling. The interaction of SOS2 with both NDPK2 and CATs reveals a point of cross talk between salt stress response and other signaling factors including H2O2.


2018 ◽  
Vol 19 (11) ◽  
pp. 3359 ◽  
Author(s):  
Ning Wang ◽  
Zhixin Qian ◽  
Manwei Luo ◽  
Shoujin Fan ◽  
Xuejie Zhang ◽  
...  

Salinity is one of the most important abiotic stresses threatening plant growth and agricultural productivity worldwide. In green alga Chlamydomonas reinhardtii, physiological evidence indicates that saline stress increases intracellular peroxide levels and inhibits photosynthetic-electron flow. However, understanding the genetic underpinnings of salt-responding traits in plantae remains a daunting challenge. In this study, the transcriptome analysis of short-term acclimation to salt stress (200 mM NaCl for 24 h) was performed in C. reinhardtii. A total of 10,635 unigenes were identified as being differently expressed by RNA-seq, including 5920 up- and 4715 down-regulated unigenes. A series of molecular cues were screened for salt stress response, including maintaining the lipid homeostasis by regulating phosphatidic acid, acetate being used as an alternative source of energy for solving impairment of photosynthesis, and enhancement of glycolysis metabolism to decrease the carbohydrate accumulation in cells. Our results may help understand the molecular and genetic underpinnings of salt stress responses in green alga C. reinhardtii.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 742
Author(s):  
Nopphawitchayaphong Khrueasan ◽  
Panita Chutimanukul ◽  
Kitiporn Plaimas ◽  
Teerapong Buaboocha ◽  
Meechai Siangliw ◽  
...  

‘KDML105’ rice, known as jasmine rice, is grown in northeast Thailand. The soil there has high salinity, which leads to low productivity. Chromosome substitution lines (CSSLs) with the ‘KDML105’ rice genetic background were evaluated for salt tolerance. CSSL18 showed the highest salt tolerance among the four lines tested. Based on a comparison between the CSSL18 and ‘KDML105’ transcriptomes, more than 27,000 genes were mapped onto the rice genome. Gene ontology enrichment of the significantly differentially expressed genes (DEGs) revealed that different mechanisms were involved in the salt stress responses between these lines. Biological process and molecular function enrichment analysis of the DEGs from both lines revealed differences in the two-component signal transduction system, involving LOC_Os04g23890, which encodes phototropin 2 (PHOT2), and LOC_Os07g44330, which encodes pyruvate dehydrogenase kinase (PDK), the enzyme that inhibits pyruvate dehydrogenase in respiration. OsPHOT2 expression was maintained in CSSL18 under salt stress, whereas it was significantly decreased in ‘KDML105’, suggesting OsPHOT2 signaling may be involved in salt tolerance in CSSL18. PDK expression was induced only in ‘KDML105’. These results suggested respiration was more inhibited in ‘KDML105’ than in CSSL18, and this may contribute to the higher salt susceptibility of ‘KDML105’ rice. Moreover, the DEGs between ‘KDML105’ and CSSL18 revealed the enrichment in transcription factors and signaling proteins located on salt-tolerant quantitative trait loci (QTLs) on chromosome 1. Two of them, OsIRO2 and OsMSR2, showed the potential to be involved in salt stress response, especially, OsMSR2, whose orthologous genes in Arabidopsis had the potential role in photosynthesis adaptation under salt stress.


2020 ◽  
Vol 100 (4) ◽  
pp. 445-455
Author(s):  
Jin Ma ◽  
Yichun Wang ◽  
Jiayun Li

Alfalfa is an important economic crop; a mutant (M) strain was identified during planting and production. M plants consistently had better relative water content and relative electrical conductivity under higher salt conditions compared with the wild type (WT) plants, suggesting that M plants have higher tolerance for salt. To understand the microRNAs (miRNAs) involved in salt stress response in alfalfa, 128 miRNAs were identified from the WT and M alfalfa plants under normal and saline conditions. Of the 128 miRNAs, 29 and 23 differentially expressed miRNAs were identified in the M vs. WT control (M-CK vs. WT-CK) and salt-stressed M vs. WT (M-salt vs. WT-salt) comparison, respectively. These miRNAs responded to salt stress and showed different expression patterns after salt treatment. Their potential target genes were predicted and further analysed by GO classification and KEGG pathway analysis, where the majority of target genes were associated with plant growth and development, and exhibited significant changes in WT and M plants. In addition, compared with the WT plants, miR172-CNGC, miR319-CAX2, miR408-NHX and miR2590-CHX14/15 showed significant upregulation in M alfalfa plants, suggesting that M plants have higher ion transport levels. The differential expression profiles of miRNAs and putative target genes were further validated by quantitative real-time polymerase chain reaction. It is speculated that these miRNAs are involved in the increased salt tolerance of the M alfalfa plants.


2013 ◽  
Vol 450 (3) ◽  
pp. 573-581 ◽  
Author(s):  
Fionn McLoughlin ◽  
Steven A. Arisz ◽  
Henk L. Dekker ◽  
Gertjan Kramer ◽  
Chris G. de Koster ◽  
...  

PA (phosphatidic acid) is a lipid second messenger involved in an array of processes occurring during a plant's life cycle. These include development, metabolism, and both biotic and abiotic stress responses. PA levels increase in response to salt, but little is known about its function in the earliest responses to salt stress. In the present study we have combined an approach to isolate peripheral membrane proteins of Arabidopsis thaliana roots with lipid-affinity purification, to identify putative proteins that interact with PA and are recruited to the membrane in response to salt stress. Of the 42 putative PA-binding proteins identified by MS, a set of eight new candidate PA-binding proteins accumulated at the membrane fraction after 7 min of salt stress. Among these were CHC (clathrin heavy chain) isoforms, ANTH (AP180 N-terminal homology) domain clathrin-assembly proteins, a putative regulator of potassium transport, two ribosomal proteins, GAPDH (glyceraldehyde 3-phosphate dehydrogenase) and a PI (phosphatidylinositol) 4-kinase. PA binding and salt-induced membrane recruitment of GAPDH and CHC were confirmed by Western blot analysis of the cellular fractions. In conclusion, the approach of the present study is an effective way to isolate biologically relevant lipid-binding proteins and provides new leads in the study of PA-mediated salt-stress responses in roots.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
R. A. O. Yuchun ◽  
J. I. A. O. Ran ◽  
W. A. N. G. Sheng ◽  
W. U. Xianmei ◽  
Y. E. Hanfei ◽  
...  

AbstractLesion mimic mutants spontaneously produce disease spots in the absence of biotic or abiotic stresses. Analyzing lesion mimic mutants’ sheds light on the mechanisms underlying programmed cell death and defense-related responses in plants. Here, we isolated and characterized the rice (Oryza sativa) spotted leaf 36 (spl36) mutant, which was identified from an ethyl methanesulfonate-mutagenized japonica cultivar Yundao population. spl36 displayed spontaneous cell death and enhanced resistance to rice bacterial pathogens. Gene expression analysis suggested that spl36 functions in the disease response by upregulating the expression of defense-related genes. Physiological and biochemical experiments indicated that more cell death occurred in spl36 than the wild type and that plant growth and development were affected in this mutant. We isolated SPL36 by map-based cloning. A single base substitution was detected in spl36, which results in a cysteine-to-arginine substitution in SPL36. SPL36 is predicted to encode a receptor-like protein kinase containing leucine-rich domains that may be involved in stress responses in rice. spl36 was more sensitive to salt stress than the wild type, suggesting that SPL36 also negatively regulates the salt-stress response. These findings suggest that SPL36 regulates the disease resistance response in rice by affecting the expression of defense- and stress-related genes.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1667 ◽  
Author(s):  
Michael Santangeli ◽  
Concetta Capo ◽  
Simone Beninati ◽  
Fabrizio Pietrini ◽  
Cinzia Forni

Soil salinity is considered one of the most severe abiotic stresses in plants; plant acclimation to salinity could be a tool to improve salt tolerance even in a sensitive genotype. In this work we investigated the physiological mechanisms underneath the response to gradual and prolonged exposure to sodium chloride in cultivars of Brassica napus L. Fifteen days old seedlings of the cultivars Dynastie (salt tolerant) and SY Saveo (salt sensitive) were progressively exposed to increasing soil salinity conditions for 60 days. Salt exposed plants of both cultivars showed reductions of biomass, size and number of leaves. However, after 60 days the relative reduction in biomass was lower in sensitive cultivar as compared to tolerant ones. An increase of chlorophylls content was detected in both cultivars; the values of the quantum efficiency of PSII photochemistry (ΦPSII) and those of the electron transport rate (ETR) indicated that the photochemical activity was only partially reduced by NaCl treatments in both cultivars. Ascorbate peroxidase (APX) activity was higher in treated samples with respect to the controls, indicating its activation following salt exposure, and confirming its involvement in salt stress response. A gradual exposure to salt could elicit different salt stress responses, thus preserving plant vitality and conferring a certain degree of tolerance, even though the genotype was salt sensitive at the seed germination stage. An improvement of salt tolerance in B. napus could be obtained by acclimation to saline conditions.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zihan Cheng ◽  
Xuemei Zhang ◽  
Wenjing Yao ◽  
Yuan Gao ◽  
Kai Zhao ◽  
...  

Abstract Background Xyloglucan endotransglucosylase/hydrolase (XTH) family plays an important role in cell wall reconstruction and stress resistance in plants. However, the detailed characteristics of XTH family genes and their expression pattern under salt stress have not been reported in poplar. Results In this study, a total of 43 PtrXTH genes were identified from Populus simonii × Populus nigra, and most of them contain two conserved structures (Glyco_hydro_16 and XET_C domain). The promoters of the PtrXTH genes contain mutiple cis-acting elements related to growth and development and stress responses. Collinearity analysis revealed that the XTH genes from poplar has an evolutionary relationship with other six species, including Eucalyptus robusta, Solanum lycopersicum, Glycine max, Arabidopsis, Zea mays and Oryza sativa. Based on RNA-Seq analysis, the PtrXTH genes have different expression patterns in the roots, stems and leaves, and many of them are highly expressed in the roots. In addition, there are11 differentially expressed PtrXTH genes in the roots, 9 in the stems, and 7 in the leaves under salt stress. In addition, the accuracy of RNA-Seq results was verified by RT-qPCR. Conclusion All the results indicated that XTH family genes may play an important role in tissue specificity and salt stress response. This study will lay a theoretical foundation for further study on molecular function of XTH genes in poplar.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8829 ◽  
Author(s):  
Youju Ye ◽  
Jianwen Wang ◽  
Wei Wang ◽  
Li-an Xu

Auxin response factors (ARFs) are important transcription factors (TFs) that are differentially expressed in response to various abiotic stresses. The important roles of ARFs and small RNA-ARF pathways in mediating plant growth and stress responses have emerged in several recent studies. However, no studies on the involvement of ARFs in tamarisk trees, which are resistant to salinity, have been conducted. In this study, systematic analysis revealed 12 TcARF genes belonging to five different groups in Tamarix chinensis. The microRNA response elements of miR160, which belongs to group I and miR167, which belongs to group III, were conserved in terms of their location and sequence. Moreover, digital gene expression profiles suggested that a potential miR167 target gene, TcARF6, was rapidly expressed in response to salt stress. Cloning of TcARF6 revealed that TcARF6 could be an activation TF with a glutamine-rich region and expression pattern analysis revealed that the expression of TcARF6 was significantly downregulated specifically in the roots. A significant negative correlation in the expression pattern of tch-miR167/TcARF6 indicated that this module may play a key role in the response to salt stress. Overall, these results provide basic information on the posttranscriptional regulation of TcARF6 for future investigations of the T. chinensis salt-stress response.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 743 ◽  
Author(s):  
Fu ◽  
Ding ◽  
Sun ◽  
Zhang

Duckweeds are a family of freshwater angiosperms with morphology reduced to fronds and propagation by vegetative budding. Unlike other angiosperm plants such as Arabidopsis and rice that have physical barriers between their photosynthetic organs and soils, the photosynthetic organs of duckweeds face directly to their nutrient suppliers (waters), therefore, their responses to salinity may be distinct. In this research, we found that the duckweed Spirodela polyrhiza L. accumulated high content of sodium and reduced potassium and calcium contents in large amounts under salt stress. Fresh weight, Rubisco and AGPase activities, and starch content were significantly decreaseded in the first day but recovered gradually in the following days and accumulated more starch than control from Day 3 to Day 5 when treated with 100 mM and 150 mM NaCl. A total of 2156 differentially expressed genes were identified. Overall, the genes related to ethylene metabolism, major CHO degradation, lipid degradation, N-metabolism, secondary metabolism of flavonoids, and abiotic stress were significantly increased, while those involved in cell cycle and organization, cell wall, mitochondrial electron transport of ATP synthesis, light reaction of photosynthesis, auxin metabolism, and tetrapyrrole synthesis were greatly inhibited. Moreover, salt stress also significantly influenced the expression of transcription factors that are mainly involved in abiotic stress and cell differentiation. However, most of the osmosensing calcium antiporters (OSCA) and the potassium inward channels were downregulated, Na+/H+ antiporters (SOS1 and NHX) and a Na+/Ca2+ exchanger were slightly upregulated, but most of them did not respond significantly to salt stress. These results indicated that the ion homeostasis was strongly disturbed. Finally, the shared and distinct regulatory networks of salt stress responses between duckweeds and other plants were intensively discussed. Taken together, these findings provide novel insights into the underlying mechanisms of salt stress response in duckweeds, and can be served as a useful foundation for salt tolerance improvement of duckweeds for the application in salinity conditions.


Sign in / Sign up

Export Citation Format

Share Document