scholarly journals MicroRNAs as Biomarkers for Animal Health and Welfare in Livestock

2020 ◽  
Vol 7 ◽  
Author(s):  
Silvia Miretti ◽  
Cristina Lecchi ◽  
Fabrizio Ceciliani ◽  
Mario Baratta

MicroRNAs (miRNAs) are small and highly conserved non-coding RNA molecules that orchestrate a wide range of biological processes through the post-transcriptional regulation of gene expression. An intriguing aspect in identifying these molecules as biomarkers is derived from their role in cell-to-cell communication, their active secretion from cells into the extracellular environment, their high stability in body fluids, and their ease of collection. All these features confer on miRNAs the potential to become a non-invasive tool to score animal welfare. There is growing interest in the importance of miRNAs as biomarkers for assessing the welfare of livestock during metabolic, environmental, and management stress, particularly in ruminants, pigs, and poultry. This review provides an overview of the current knowledge regarding the potential use of tissue and/or circulating miRNAs as biomarkers for the assessment of the health and welfare status in these livestock species.

Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1574 ◽  
Author(s):  
Ugo Ala

MicroRNAs (miRNAs), a class of small non-coding RNA molecules, are responsible for RNA silencing and post-transcriptional regulation of gene expression. They can mediate a fine-tuned crosstalk among coding and non-coding RNA molecules sharing miRNA response elements (MREs). In a suitable environment, both coding and non-coding RNA molecules can be targeted by the same miRNAs and can indirectly regulate each other by competing for them. These RNAs, otherwise known as competing endogenous RNAs (ceRNAs), lead to an additional post-transcriptional regulatory layer, where non-coding RNAs can find new significance. The miRNA-mediated interplay among different types of RNA molecules has been observed in many different contexts. The analyses of ceRNA networks in cancer and other pathologies, as well as in other physiological conditions, provide new opportunities for interpreting omics data for the field of personalized medicine. The development of novel computational tools, providing putative predictions of ceRNA interactions, is a rapidly growing field of interest. In this review, I discuss and present the current knowledge of the ceRNA mechanism and its implications in a broad spectrum of different pathologies, such as cardiovascular or autoimmune diseases, cancers and neurodegenerative disorders.


2019 ◽  
Vol 65 (4) ◽  
Author(s):  
Joanna Bujak ◽  
Patrycja Kopytko ◽  
Małgorzata Lubecka ◽  
Katarzyna Sokołowska ◽  
Maciej Tarnowski

Angiogenesis is the process that leads to the formation of new blood vessels. Under physiological conditions it occurs, inter alia, during corpus luteum formation and in some stages of the menstrual cycle. However, angiogenesis plays an essential role in many pathological conditions, particularly cancer. New blood vessel formation provides cancer cells with oxygen and essential nutrients, which stimulates tumor growth and facilitates its metastasis. Increasing evidence indicates that angiogenesis is regulated by microRNAs (miRNAs), which are small non-coding RNA molecules of 19–25 nucleotides. The main function of miRNAs is post-transcriptional regulation of gene expression, which controls many key biological processes, including cell proliferation, differentiation and migration. Endothelial miRNAs, known as angiomiRs, are presumably involved in tumor development and angiogenesis through regulation of pro- and antiangiogenic factors. To date, the miRNAs that stimulate angiogenesis are: miR-9, miR-27a, miR-30d, miR0-130b, miR-139, miR-146a, miR-150, miR-155, miR-200c, miR-296 and miR-558. Conversely, miRNAs that inhibit angiogenesis are: miR-145, miR-519c, miR-22, miR-20a, miR-92, miR-7b, miR-221, miR-222, miR-328 and miR-101.


2018 ◽  
Vol 159 (7) ◽  
pp. 245-251 ◽  
Author(s):  
Zoltán Nagy ◽  
Ábel Decmann ◽  
Pál Perge ◽  
Péter Igaz

Abstract: Adrenocortical tumours are quite prevalent. Most of these tumours are benign, hormonally inactive adrenocortical adenomas. Rare hormone-secreting adrenocortical adenomas are associated with severe clinical consequences, whereas the prognosis of the rare adrenocortical cancer is rather poor in its advanced stages. The pathogenesis of these tumours is only partly elucidated. MicroRNAs are small, non-coding RNA molecules that are pivotal in the regulation of several basic cell biological processes via the posttranscriptional regulation of gene expression. Their altered expression has been described in many tumours. Several tissue microRNAs, such as miR-483-5p, miR-503, miR-210, miR-335 and miR-195 were found to be differentially expressed among benign and malignant adrenocortical tumours, and these could also have pathogenic relevance. Due to their tissue specific and stable expression, microRNAs can be exploited in diagnostics as well. As the histological diagnosis of adrenocortical malignancy is difficult, microRNAs might be of help in the establishment of malignancy. Novel data show that microRNAs are secreted in various body fluids, projecting their applicability as biomarkers as part of liquid biopsy. In this review, we attempt to present a synopsis on the pathogenic relevance of microRNAs in adrenocortical tumours and their potential diagnostic applicability. Orv Hetil. 2018; 159(7): 245–251.


2020 ◽  
Vol 21 (8) ◽  
pp. 2742 ◽  
Author(s):  
Allan Böhm ◽  
Marianna Vachalcova ◽  
Peter Snopek ◽  
Ljuba Bacharova ◽  
Dominika Komarova ◽  
...  

Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules responsible for regulation of gene expression. They are involved in many pathophysiological processes of a wide spectrum of diseases. Recent studies showed their involvement in atrial fibrillation. They seem to become potential screening biomarkers for atrial fibrillation and even treatment targets for this arrhythmia. The aim of this review article was to summarize the latest knowledge about miRNA and their molecular relation to the pathophysiology, diagnosis and treatment of atrial fibrillation.


2016 ◽  
Vol 474 (1) ◽  
pp. 21-45 ◽  
Author(s):  
Shashi K. Gopal ◽  
David W. Greening ◽  
Alin Rai ◽  
Maoshan Chen ◽  
Rong Xu ◽  
...  

Cell–cell communication is critical across an assortment of physiological and pathological processes. Extracellular vesicles (EVs) represent an integral facet of intercellular communication largely through the transfer of functional cargo such as proteins, messenger RNAs (mRNAs), microRNA (miRNAs), DNAs and lipids. EVs, especially exosomes and shed microvesicles, represent an important delivery medium in the tumour micro-environment through the reciprocal dissemination of signals between cancer and resident stromal cells to facilitate tumorigenesis and metastasis. An important step of the metastatic cascade is the reprogramming of cancer cells from an epithelial to mesenchymal phenotype (epithelial–mesenchymal transition, EMT), which is associated with increased aggressiveness, invasiveness and metastatic potential. There is now increasing evidence demonstrating that EVs released by cells undergoing EMT are reprogrammed (protein and RNA content) during this process. This review summarises current knowledge of EV-mediated functional transfer of proteins and RNA species (mRNA, miRNA, long non-coding RNA) between cells in cancer biology and the EMT process. An in-depth understanding of EVs associated with EMT, with emphasis on molecular composition (proteins and RNA species), will provide fundamental insights into cancer biology.


2019 ◽  
Vol 47 (08) ◽  
pp. 1711-1735 ◽  
Author(s):  
Fu Peng ◽  
Xiaofang Xie ◽  
Cheng Peng

MicroRNAs, small non-coding RNA molecules, have gained a reputation of the most substantial regulators in gene network with the ability to down-regulate their targets. Accumulating evidence shifted insight toward microRNAs regulation as the key element of cancer initiation, development, and aggression. Recent studies have attached the importance of traditional Chinese medicine (TCM) to the treatment of various cancers, and the functional natural compounds have been considered as novel anticancer agents to directly inhibit tumor progression. In more recent decades, a wide range of biologically active components of TCM has gained increasing attention to their applications in the modulation of microRNAs. This review is on the purpose of demonstrating the significance of TCM bioactive ingredients in microRNAs regulation for cancer treatment according to the reports mainly in the recent six years, providing the evidence of efficient Chinese herbal medicine-based therapy and effective pro-diagnosis focusing on microRNAs expression of cancer patients.


2020 ◽  
Vol 21 (7) ◽  
pp. 2333
Author(s):  
Ana Lúcia Leitão ◽  
Marina C. Costa ◽  
André F. Gabriel ◽  
Francisco J. Enguita

Complex organisms are associations of different cells that coexist and collaborate creating a living consortium, the holobiont. The relationships between the holobiont members are essential for proper homeostasis of the organisms, and they are founded on the establishment of complex inter-connections between all the cells. Non-coding RNAs are regulatory molecules that can also act as communication signals between cells, being involved in either homeostasis or dysbiosis of the holobionts. Eukaryotic and prokaryotic cells can transmit signals via non-coding RNAs while using specific extracellular conveyors that travel to the target cell and can be translated into a regulatory response by dedicated molecular machinery. Within holobionts, non-coding RNA regulatory signaling is involved in symbiotic and pathogenic relationships among the cells. This review analyzes current knowledge regarding the role of non-coding RNAs in cell-to-cell communication, with a special focus on the signaling between cells in multi-organism consortia.


2019 ◽  
Vol 5 (1) ◽  
pp. 13 ◽  
Author(s):  
Romana Butova ◽  
Petra Vychytilova-Faltejskova ◽  
Adela Souckova ◽  
Sabina Sevcikova ◽  
Roman Hajek

Multiple myeloma (MM) is the second most common hematooncological disease of malignant plasma cells in the bone marrow. While new treatment brought unprecedented increase of survival of patients, MM pathogenesis is yet to be clarified. Increasing evidence of expression of long non-coding RNA molecules (lncRNA) linked to development and progression of many tumors suggested their important role in tumorigenesis. To date, over 15,000 lncRNA molecules characterized by diversity of function and specificity of cell distribution were identified in the human genome. Due to their involvement in proliferation, apoptosis, metabolism, and differentiation, they have a key role in the biological processes and pathogenesis of many diseases, including MM. This review summarizes current knowledge of non-coding RNAs (ncRNA), especially lncRNAs, and their role in MM pathogenesis. Undeniable involvement of lncRNAs in MM development suggests their potential as biomarkers.


2019 ◽  
Vol 65 (5) ◽  
pp. 311-318 ◽  
Author(s):  
Alexander S. Lutsenko ◽  
Zhanna E. Belaya ◽  
Elena G. Przhiyalkovskaya ◽  
Alexey G. Nikitin ◽  
Philipp A. Koshkin ◽  
...  

BACKGROUND: microRNA is a class of small non-coding RNA molecules involved in posttranscriptional regulation of gene expression. MicroRNAs are detectable in blood in stable concentrations, which makes them promising biomarkers for various diseases. AIM: to assess plasma microRNA expression in patients with active acromegaly compared with healthy controls. MATERIAL AND METHODS: single-center, case-control study: assessment of plasma microRNA in patients with acromegaly compared with healthy controls. Fasting blood samples were drawn and centrifuged at +5С temperature and 3000 rpm for 20 minutes, then aliquoted and frozen at 80C until further analysis. MicroRNA extraction and library preparation was done according to manufacturers instructions. Expression analysis was performed on NextSeq sequencer. Bioinformatic analysis using atropos (adapted deletion), STAR (aligning), FastQC (quality control), seqbuster/seqcluster/miRge2 (microRNA annotation, isomiR and new microRNA search, expression analysis). Primary endpoint of the study differential expression of plasma microRNA in patients with acromegaly compared with healthy controls. RESULTS: we included 12 patients with acromegaly age 33.1 [20; 47], BMI 29.3 kg/m2 [24.0; 39.6], IGF-1 686.1 ng/mL [405.9; 1186.0] and 12 healthy subjects age 36.2 [26; 44], BMI 26.7 kg/m2 [19.5; 42.5], IGF-1 210.4 ng/mL [89.76; 281.90]; gender ratio for both groups 4 males, 8 females. The groups did not differ in gender (p=0.666), age (p=0.551) and BMI (p=0.378). We found decreased expression of four microRNAs in patients with acromegaly: miR-4446-3p 1.317 (p=0.001), miR-215-5p 3.040 (p=0.005), miR-342-5p 1.875 (p=0.013) and miR-191-5p 0.549 (p=0.039). However, none of these changes were statistically significant after adjustment for multiple comparisons (q 0.1). CONCLUSION: we found four microRNAs, which could potentially be downregulated in plasma of patients with acromegaly. The result need to be validated using different measurement method with larger sample size.


2017 ◽  
Vol 14 (1) ◽  
Author(s):  
Hamid Hamzeiy ◽  
Rabia Suluyayla ◽  
Christoph Brinkrolf ◽  
Sebastian Jan Janowski ◽  
Ralf Hofestaedt ◽  
...  

AbstractMicroRNAs (miRNAs) are small RNA molecules which are known to take part in post-transcriptional regulation of gene expression. Here, VANESA, an existing platform for reconstructing, visualizing, and analysis of large biological networks, has been further expanded to include all experimentally validated human miRNAs available within miRBase, TarBase and miRTarBase. This is done by integrating a custom hybrid miRNA database to DAWIS-M.D., VANESA’s main data source, enabling the visualization and analysis of miRNAs within large biological pathways such as those found within the Kyoto Encyclopedia of Genes and Genomes (KEGG). Interestingly, 99.15 % of human KEGG pathways either contain genes which are targeted by miRNAs or harbor them. This is mainly due to the high number of interaction partners that each miRNA could have (e.g.: hsa-miR-335-5p targets 2544 genes and 71 miRNAs target


Sign in / Sign up

Export Citation Format

Share Document